118 resultados para Nodal admittance matrices
Resumo:
Purpose: Pelvic radiation therapy (RT) represents a therapeutic option in the treatment of node-positive prostate cancer but it remains controversial, because of its high rate toxicities. New radiation technique such as IMRT may reduce these complications. In this study, we aimed to assess the rate of toxicities according to CTC-NCI.v3 in such patients treated with either 3DCRT or IMRT (Tomotherapy).Methods and Materials: From January 2008 to December 2010, data were analyzed from 30 consecutive patients including 29 node-positive prostate cancer undergoing definitive or adjuvant RT (IMRT and/or 3DCRT) after radical prostatectomy and lymphadenectomy combined to hormonal therapy. Median age was 66 years (range : 52-83). Median preoperative PSA value was 12 ng/ml (range: 2.72-165). According to the pT-classification, there were 4 pT2, 7 pT3a, 10 pT3b, and 1 pT4 patients. Pathologic positive lymph nodes were found in 23 patients. Radiologic positive lymph nodes were found in 5 patients. Two patients were node negative. Gleason score was ranging between 7 to 10. Twelve patients were treated by Tomotherapy including 4 with simultaneous integrated boost (SIB). Eighteen patients were treated by Tomotherapy including 2 with SIB to the whole pelvis and 3DCRT boost to the prostate. V50% for bladder and rectum were recorded. Acute and late toxicities were assessed according to CTC-NCI.v3 classification.Results: With a median follow-up of 17 months, only one patient presented nodal and metastatic failure. Urinary incontinence was graded 1 after surgery for 6 patients and grade 2 in two. Sexual impuissance was noted in 3 patients. Acute toxicities during RT were proctitis grade 0 in 23 patients (76.5%), grade 1 in 7 (23.5%). Nocturia grade 1 in 9 patients. Interruption of treatment was seen in only case because of grade 3 urinary incontinence. Late effects included erectile dysfunction in 5 patients (83%) and one patient had grade 3proctitis requiring colostomy 3 months after RT. Median Dose-Volume Histogram according to radiation techniques V50% bladder V50% rectum Tomotherapy (IMRT) 36.25 Gy 39 Gy Tomotherapy + 3DCRT 41.26 Gy 39.18 GyConclusion: Based on our above-mentioned findings, there is no a significant difference in morbidity in patients treated with Tomotherapy or Tomotherapy with 3DCRT boost.
Resumo:
Models of codon evolution have attracted particular interest because of their unique capabilities to detect selection forces and their high fit when applied to sequence evolution. We described here a novel approach for modeling codon evolution, which is based on Kronecker product of matrices. The 61 × 61 codon substitution rate matrix is created using Kronecker product of three 4 × 4 nucleotide substitution matrices, the equilibrium frequency of codons, and the selection rate parameter. The entities of the nucleotide substitution matrices and selection rate are considered as parameters of the model, which are optimized by maximum likelihood. Our fully mechanistic model allows the instantaneous substitution matrix between codons to be fully estimated with only 19 parameters instead of 3,721, by using the biological interdependence existing between positions within codons. We illustrate the properties of our models using computer simulations and assessed its relevance by comparing the AICc measures of our model and other models of codon evolution on simulations and a large range of empirical data sets. We show that our model fits most biological data better compared with the current codon models. Furthermore, the parameters in our model can be interpreted in a similar way as the exchangeability rates found in empirical codon models.
Resumo:
Because of the various matrices available for forensic investigations, the development of versatile analytical approaches allowing the simultaneous determination of drugs is challenging. The aim of this work was to assess a liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform allowing the rapid quantification of colchicine in body fluids and tissues collected in the context of a fatal overdose. For this purpose, filter paper was used as a sampling support and was associated with an automated 96-well plate extraction performed by the LC autosampler itself. The developed method features a 7-min total run time including automated filter paper extraction (2 min) and chromatographic separation (5 min). The sample preparation was reduced to a minimum regardless of the matrix analyzed. This platform was fully validated for dried blood spots (DBS) in the toxic concentration range of colchicine. The DBS calibration curve was applied successfully to quantification in all other matrices (body fluids and tissues) except for bile, where an excessive matrix effect was found. The distribution of colchicine for a fatal overdose case was reported as follows: peripheral blood, 29 ng/ml; urine, 94 ng/ml; vitreous humour and cerebrospinal fluid, < 5 ng/ml; pericardial fluid, 14 ng/ml; brain, < 5 pg/mg; heart, 121 pg/mg; kidney, 245 pg/mg; and liver, 143 pg/mg. Although filter paper is usually employed for DBS, we report here the extension of this alternative sampling support to the analysis of other body fluids and tissues. The developed platform represents a rapid and versatile approach for drug determination in multiple forensic media.
Resumo:
This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench. [Authors]
Resumo:
We study an adaptive statistical approach to analyze brain networks represented by brain connection matrices of interregional connectivity (connectomes). Our approach is at a middle level between a global analysis and single connections analysis by considering subnetworks of the global brain network. These subnetworks represent either the inter-connectivity between two brain anatomical regions or by the intra-connectivity within the same brain anatomical region. An appropriate summary statistic, that characterizes a meaningful feature of the subnetwork, is evaluated. Based on this summary statistic, a statistical test is performed to derive the corresponding p-value. The reformulation of the problem in this way reduces the number of statistical tests in an orderly fashion based on our understanding of the problem. Considering the global testing problem, the p-values are corrected to control the rate of false discoveries. Finally, the procedure is followed by a local investigation within the significant subnetworks. We contrast this strategy with the one based on the individual measures in terms of power. We show that this strategy has a great potential, in particular in cases where the subnetworks are well defined and the summary statistics are properly chosen. As an application example, we compare structural brain connection matrices of two groups of subjects with a 22q11.2 deletion syndrome, distinguished by their IQ scores.
Resumo:
Granzyme (gzm) A and B, proteases of NK cells and T killer cells, mediate cell death, but also cleave extracellular matrices, inactivate intracellular pathogens, and induce cytokines. Moreover, macrophages, Th2 cells, regulatory T cells, mast cells, and B cells can express gzms. We recently reported gzm induction in human filarial infection. In this study, we show that in rodent filarial infection with Litomosoides sigmodontis, worm loads were significantly reduced in gzmA×B and gzmB knockout mice during the whole course of infection, but enhanced only early in gzmA knockout compared with wild-type mice. GzmA/B deficiency was associated with a defense-promoting Th2 cytokine and Ab shift, enhanced early inflammatory gene expression, and a trend of reduced alternatively activated macrophage induction, whereas gzmA deficiency was linked with reduced inflammation and a trend toward increased alternatively activated macrophages. This suggests a novel and divergent role for gzms in helminth infection, with gzmA contributing to resistance and gzmB promoting susceptibility.
Resumo:
A distinct subset of T helper cells, named follicular T helper cells (T(FH), has been recently described. T(FH) cells are characterized by their homing capacities in the germinal centers of B-cell follicles where they interact with B cells, supporting B-cell survival and antibody responses. T(FH) cells can be identified by the expression of several markers including the chemokine CXCL13, the costimulatory molecules PD1 and inducible costimulator, and the transcription factor BCL6. They appear to be relevant markers for the diagnosis of angioimmunoblastic T-cell lymphoma (AITL) and have helped to recognize subsets of peripheral T-cell lymphoma, not otherwise specified, with nodal or cutaneous presentation expressing T(FH) antigens that might be related to AITL. In B-cell neoplasms, T(FH) cells are present within the microenvironment of nodular lymphocyte-predominant Hodgkin lymphoma and follicular lymphoma, where they likely support the growth of neoplastic germinal center-derived B cells. Interestingly, the amount of PD1+ cells in the neoplastic follicles might have a favorable impact on the outcome of follicular lymphoma patients. Altogether, the availability of antibodies directed to T(FH)-associated molecules has important diagnostic and prognostic implications in hematopathology. In addition, T(FH) cells could represent interesting targets in T(FH)-derived lymphomas such as AITL, or in some B-cell neoplasms where they act as part of the tumor microenvironment.
Resumo:
Doxorubicin is an antineoplasic agent active against sarcoma pulmonary metastasis, but its clinical use is hampered by its myelotoxicity and its cumulative cardiotoxicity, when administered systemically. This limitation may be circumvented using the isolated lung perfusion (ILP) approach, wherein a therapeutic agent is infused locoregionally after vascular isolation of the lung. The influence of the mode of infusion (anterograde (AG): through the pulmonary artery (PA); retrograde (RG): through the pulmonary vein (PV)) on doxorubicin pharmacokinetics and lung distribution was unknown. Therefore, a simple, rapid and sensitive high-performance liquid chromatography method has been developed to quantify doxorubicin in four different biological matrices (infusion effluent, serum, tissues with low or high levels of doxorubicin). The related compound daunorubicin was used as internal standard (I.S.). Following a single-step protein precipitation of 500 microl samples with 250 microl acetone and 50 microl zinc sulfate 70% aqueous solution, the obtained supernatant was evaporated to dryness at 60 degrees C for exactly 45 min under a stream of nitrogen and the solid residue was solubilized in 200 microl of purified water. A 100 microl-volume was subjected to HPLC analysis onto a Nucleosil 100-5 microm C18 AB column equipped with a guard column (Nucleosil 100-5 microm C(6)H(5) (phenyl) end-capped) using a gradient elution of acetonitrile and 1-heptanesulfonic acid 0.2% pH 4: 15/85 at 0 min-->50/50 at 20 min-->100/0 at 22 min-->15/85 at 24 min-->15/85 at 26 min, delivered at 1 ml/min. The analytes were detected by fluorescence detection with excitation and emission wavelength set at 480 and 550 nm, respectively. The calibration curves were linear over the range of 2-1000 ng/ml for effluent and plasma matrices, and 0.1 microg/g-750 microg/g for tissues matrices. The method is precise with inter-day and intra-day relative standard deviation within 0.5 and 6.7% and accurate with inter-day and intra-day deviations between -5.4 and +7.7%. The in vitro stability in all matrices and in processed samples has been studied at -80 degrees C for 1 month, and at 4 degrees C for 48 h, respectively. During initial studies, heparin used as anticoagulant was found to profoundly influence the measurements of doxorubicin in effluents collected from animals under ILP. Moreover, the strong matrix effect observed with tissues samples indicate that it is mandatory to prepare doxorubicin calibration standard samples in biological matrices which would reflect at best the composition of samples to be analyzed. This method was successfully applied in animal studies for the analysis of effluent, serum and tissue samples collected from pigs and rats undergoing ILP.
Resumo:
OBJECTIVE: Comparison of prospectively treated patients with neoadjuvant cisplatin-based chemotherapy vs radiochemotherapy followed by resection for mediastinoscopically proven stage III N2 non-small cell lung cancer with respect to postoperative morbidity, pathological nodal downstaging, overall and disease-free survival, and site of recurrence. METHODS: Eighty-two patients were enrolled between January 1994 to June 2003, 36 had cisplatin and doxetacel-based chemotherapy (group I) and 46 cisplatin-based radiochemotherapy up to 44 Gy (group II), either as sequential (25 patients) or concomitant (21 patients) treatment. All patients had evaluation of absence of distant metastases by bone scintigraphy, thoracoabdominal CT scan or PET scan, and brain MRI, and all underwent pre-induction mediastinoscopy, resection and mediastinal lymph node dissection by the same surgeon. RESULTS: Group I and II comprised T1/2 tumors in 47 and 28%, T3 tumors in 45 and 41%, and T4 tumors in 8 and 31% of the patients, respectively (P=0.03). There was a similar distribution of the extent of resection (lobectomy, sleeve lobectomy, left and right pneumonectomy) in both groups (P=0.9). Group I and II revealed a postoperative 90-d mortality of 3 and 4% (P=0.6), a R0-resection rate of 92 and 94% (P=0.9), and a pathological mediastinal downstaging in 61 and 78% of the patients (P<0.01), respectively. 5y-overall survival and disease-free survival of all patients were 40 and 36%, respectively, without significant difference between T1-3 and T4 tumors. There was no significant difference in overall survival rate in either induction regimens, however, radiochemotherapy was associated with a longer disease-free survival than chemotherapy (P=0.04). There was no significant difference between concurrent vs sequential radiochemotherapy with respect to postoperative morbidity, resectability, pathological nodal downstaging, survival and disease-free survival. CONCLUSIONS: Neoadjuvant cisplatin-based radiochemotherapy was associated with a similar postoperative mortality, an increased pathological nodal downstaging and a better disease-free survival as compared to cisplatin doxetacel-based chemotherapy in patients with stage III (N2) NSCLC although a higher number of T4 tumors were admitted to radiochemotherapy.
Resumo:
In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardised exchange matrix appearing in spectral clustering, and generalise to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an acessibility matrix into a exchange matrix with with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.
Resumo:
γ-Hydroxybutyric acid (GHB) is an endogenous short-chain fatty acid popular as a recreational drug due to sedative and euphoric effects, but also often implicated in drug-facilitated sexual assaults owing to disinhibition and amnesic properties. Whilst discrimination between endogenous and exogenous GHB as required in intoxication cases may be achieved by the determination of the carbon isotope content, such information has not yet been exploited to answer source inference questions of forensic investigation and intelligence interests. However, potential isotopic fractionation effects occurring through the whole metabolism of GHB may be a major concern in this regard. Thus, urine specimens from six healthy male volunteers who ingested prescription GHB sodium salt, marketed as Xyrem(®), were analysed by means of gas chromatography/combustion/isotope ratio mass spectrometry to assess this particular topic. A very narrow range of δ(13)C values, spreading from -24.810/00 to -25.060/00, was observed, whilst mean δ(13)C value of Xyrem(®) corresponded to -24.990/00. Since urine samples and prescription drug could not be distinguished by means of statistical analysis, carbon isotopic effects and subsequent influence on δ(13)C values through GHB metabolism as a whole could be ruled out. Thus, a link between GHB as a raw matrix and found in a biological fluid may be established, bringing relevant information regarding source inference evaluation. Therefore, this study supports a diversified scope of exploitation for stable isotopes characterized in biological matrices from investigations on intoxication cases to drug intelligence programmes.
Resumo:
Fibrin has been long used clinically for hemostasis and sealing, yet extension of use in other applications has been limited due to its relatively rapid resorption in vivo, even with addition of aprotinin or other protease inhibitors. We report an engineered aprotinin variant that can be immobilized within fibrin and thus provide extended longevity. When recombinantly fused to a transglutaminase substrate domain from α(2)-plasmin inhibitor (α(2)PI(1-8)), the resulting variant, aprotinin-α(2)PI(1-8), was covalently crosslinked into fibrin matrices during normal thrombin/factor XIIIa-mediated polymerization. Challenge with physiological plasmin concentrations revealed that aprotinin-α(2)PI(1-8)-containing matrices retained 78% of their mass after 3 wk, whereas matrices containing wild type (WT) aprotinin degraded completely within 1 wk. Plasmin challenge of commercial sealants Omrixil and Tisseel, supplemented with aprotinin-α(2)PI(1-8) or WT aprotinin, showed extended longevity as well. When seeded with human dermal fibroblasts, aprotinin-α(2)PI(1-8)-supplemented matrices supported cell growth for at least 33% longer than those containing WT aprotinin. Subcutaneously implanted matrices containing aprotinin-α(2)PI(1-8) were detectable in mice for more than twice as long as those containing WT aprotinin. We conclude that our engineered recombinant aprotinin variant can confer extended longevity to fibrin matrices more effectively than WT aprotinin in vitro and in vivo.
Resumo:
Le prélèvement des ganglions sentinelles apparaît comme une technique séduisante pour l'évaluation ganglionnaire des cancers du col utérin de faible stade. La sélection d'une population à bas risque de métastase ganglionnaire, un entraînement minimal et le respect de quelques règles simples permettent de limiter le risque de faux négatif au minimum. La technique apporte des informations supplémentaires sur le plan anatomique en identifiant des ganglions situés en dehors des zones habituelles de curage, et sur le plan histologique avec la mise en évidence de cellules tumorales isolées et surtout de micrométastases dont la valeur pronostique est suspectée Sentinel node biopsy appears as a promising technique for the assessment of nodal disease in early cervical cancers. Selection of a population with a low risk of nodal metastasis, a minimal training, and simple rules allow a low false negative rate. Sentinel node biopsy provides supplementary information, such as anatomical information (nodes outside of routine lymphadenectomy areas) and histological information (isolated tumors cells and micrometastases).
Resumo:
Scaffold materials should favor cell attachment and proliferation, and provide designable 3D structures with appropriate mechanical strength. Collagen matrices have proven to be beneficial scaffolds for tissue regeneration. However, apart from small intestinal submucosa, they offer a limited mechanical strength even if crosslinking can enhance their mechanical properties. A more cell-friendly way to increase material strength is to combine synthetic polymer meshes with plastic compressed collagen gels. This work describes the potential of plastic compressed collagen-poly(lactic acid-co-ɛ-caprolactone) (PLAC) hybrids as scaffolds for bladder tissue regeneration. Human bladder smooth muscle and urothelial cells were cultured on and inside collagen-PLAC hybrids in vitro. Scaffolds were analyzed by electron microscopy, histology, immunohistochemistry, and AlamarBlue assay. Both cell types proliferated in and on the hybrid, forming dense cell layers on top after two weeks. Furthermore, hybrids were implanted subcutaneously in the backs of nude mice. Host cell infiltration, scaffold degradation, and the presence of the seeded bladder cells were analyzed. Hybrids showed a lower inflammatory reaction in vivo than PLAC meshes alone, and first signs of polymer degradation were visible at six months. Collagen-PLAC hybrids have potential for bladder tissue regeneration, as they show efficient cell seeding, proliferation, and good mechanical properties.
Resumo:
Résumé : Erythropoietin (EPO) is a glycoprotein hormone endogenously produced by the kidney, whose main physiological role is the stimulation of erythropoiesis. Since the beginning of the nineties, recombinant human EPO (rhEPO), a potent anti-anaemia treatment drug, has been manufactured by pharmaceutical industries. However, the erythropoiesis stimulating power of rhEPO was rapidly misused by unscrupulous athletes in order to improve their performances in endurance sports. Endogenous EPO has the same amino-acid backbone as most of recombinant forms; the molecules however differ through their respective glycosylation patterns. This difference constitutes the basis of the usual EPO screening test (IEF) developed in 2000 and still currently used in all anti-doping laboratories of the world. Nowadays, 3 EPO generations have been commercialized. The fight against EPO abuse is a continuous challenge for anti-doping laboratories. The diversity of recombinant EPO forms and the continuous development of new ones considerably confuse the identification of EPO doping. Several facets of this fight were investigated in this work. One of the limiting aspects of doping agents screening is the availability of positive samples. Therefore, 2nd and 3rd generation EPOS, namely NESP and C.E.R.A., were injected to healthy subjects in the frame of pilot clinical studies. These latter allowed to review the current EPO identification criteria defined by the World Anti-Doping Agency (WADA) in the case of NESP and to validate and implement a new assay targeting C.E.R.A. in human serum. Both studies resulted in the determination of the respective detection windows of NESP and C.E.R.A. in biological fluids. Following that, Dynepo, a 1st generation EPO presenting similarities with the endogenous form, was also in the centre of a similar clinical study. Our work aimed to overcome the actual identification criteria, which are not adapted to Dynpeo, and to propose an alternative pattern classification method based on the discriminant analysis of IEF EPO profiles. This method might be validated for other EPO forms in the future. The detection window of this molecule was also determined. Under particular conditions, confounding effects can complicate the identification of EPO in biological matrices. For example, athletes having performed a strenuous physical effort can excrete modified isoforms of endogenous EPO, making it very similar to some recombinant forms. Such phenomena, called effort urines, were reproduced under controlled conditions and, after characterization of effort EPO, an urinary biochemical marker was proposed to unequivocally identify effort urines. It also happens that EPO analyses fail to detect endogenous levels of EPO. Such profiles were thoroughly investigated and potential causes identified. Natural reasons relying on urine properties and test specificity were underlined, but the possible addition of adulterant agents in urine samples was also considered. Therefore, a simple biochemical assay targeting the suspected substances was set up. Our work was based on the characterization of atypical EPO profiles from different origins. Therefore, 3 EPO molecules representing the 3 generations of the drug and 2 confounding effects confusing the results interpretation were studied. These studies resulted in tangible applications for the laboratory, the best example of which being the C.E.R.A. assay, but also in scientific findings allowing to improve our comprehension of EPO doping in sport.