64 resultados para Neonates, EEG Analysis, Seizures, Signal Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a method for the image analysisof Magnetic Resonance Imaging (MRI) of fetuses. Our goalis to segment the brain surface from multiple volumes(axial, coronal and sagittal acquisitions) of a fetus. Tothis end we propose a two-step approach: first, a FiniteGaussian Mixture Model (FGMM) will segment the image into3 classes: brain, non-brain and mixture voxels. Second, aMarkov Random Field scheme will be applied tore-distribute mixture voxels into either brain ornon-brain tissue. Our main contributions are an adaptedenergy computation and an extended neighborhood frommultiple volumes in the MRF step. Preliminary results onfour fetuses of different gestational ages will be shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion MRI is a well established imaging modality providing a powerful way to non-invasively probe the structure of the white matter. Despite the potential of the technique, the intrinsic long scan times of these sequences have hampered their use in clinical practice. For this reason, a wide variety of methods have been proposed to shorten acquisition times. [...] We here review a recent work where we propose to further exploit the versatility of compressed sensing and convex optimization with the aim to characterize the fiber orientation distribution sparsity more optimally. We re-formulate the spherical deconvolution problem as a constrained l0 minimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After foot and/or ankle fracture, the restoration of optimal gait symmetry is one of the criteria of recovery. Orthotic insoles and orthopaedic shoes improve gait symmetry and regularity by controlling joint motion and improving alignment. The aim of the present study was to assess the effect of prescription footwear on gait quality by using accelerometers attached to the lower back. Sixteen adult patients with persistent disability after ankle and/or foot fractures performed two 30-s walking trials with and without prescription footwear (insoles and stabilizing shoes). Sixteen control subjects were also tested for comparison. The autocorrelation function was computed from the acceleration signal and the first two dominant periods were assessed (d1 and d2). Two parameters were used: (1) Stride Regularity (SR) which expresses the similarity between strides over time (d2), and (2) Stride Symmetry (SS) a ratio (d1/d2) which expresses the left/right similarity of gait independently of repeatability in the successive movements of each limb. In control subjects, SR and SS were 0.86+/-0.05 (correlation coefficient) and 81+/-10%, respectively. In the patient group, the effect of footwear was significant (SR: 0.88+/-0.06 vs. 0.90+/-0.05, SS: 38+/-23% vs. 46+/-27%). Pain was also significantly reduced (-34%). By using a rapid and low-cost method, we objectively quantified gait quality improvement after footwear intervention, concomitant to pain reduction. Substantial inter-patient variability in the footwear outcome was observed. In conclusion, we believe that trunk accelerometry can be a useful tool in the field of gait rehabilitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At high magnetic field strengths (≥ 3T), the radiofrequency wavelength used in MRI is of the same order of magnitude of (or smaller than) the typical sample size, making transmit magnetic field (B1+) inhomogeneities more prominent. Methods such as radiofrequency-shimming and transmit SENSE have been proposed to mitigate these undesirable effects. A prerequisite for such approaches is an accurate and rapid characterization of the B1+ field in the organ of interest. In this work, a new phase-sensitive three-dimensional B1+-mapping technique is introduced that allows the acquisition of a 64 × 64 × 8 B1+-map in ≈ 20 s, yielding an accurate mapping of the relative B1+ with a 10-fold dynamic range (0.2-2 times the nominal B1+). Moreover, the predominant use of low flip angle excitations in the presented sequence minimizes specific absorption rate, which is an important asset for in vivo B1+-shimming procedures at high magnetic fields. The proposed methodology was validated in phantom experiments and demonstrated good results in phantom and human B1+-shimming using an 8-channel transmit-receive array.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To determine the frequency and factors associated with the presence of T2 shine-through effect in hepatic hemangiomas on diffusion-weighted (DW) magnetic resonance (MR) sequences. MATERIALS AND METHODS: This retrospective study was approved by institutional review board with waiver of informed consent. One hundred forty-nine consecutive patients with 388 hepatic hemangiomas who underwent a liver MR between January 2010 and November 2011 were included. MR analysis evaluated the lesion characteristics (signal intensities and enhancement patterns (classical, rapidly filling, delayed filling)), the presence of T2 shine-through effect on DW sequences (b values of 0, 150, and 600s/mm(2)), and apparent diffusion coefficient (ADC) values. Multivariate analysis was performed to study the factors associated with the T2 shine-through effect. RESULTS: T2 shine-through effect was observed in 204/388 (52.6%) of hepatic hemangiomas and in 100 (67.1%) patients. Mean ADC value of hemangiomas with T2 shine-through effect was significantly lower than hemangiomas without (2.0±0.48 vs 2.38±0.45, P<.0001). On multivariate analysis, high signal intensity on fat-suppressed T2-weighted fast spin-echo images, hemangiomas with classical or delayed enhancement, and the ADC of the liver were the only significant factors associated with T2 shine-through effect. CONCLUSION: T2 shine-through effect is commonly observed in hepatic hemangiomas and is related to hemangiomas characteristics. Radiologists should be aware of this phenomenon which could lead to misdiagnosis. Its presence should not question the diagnosis of hemangiomas when typical MR findings are found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A T(2) magnetization-preparation (T(2) Prep) sequence is proposed that is insensitive to B(1) field variations and simultaneously provides fat suppression without any further increase in specific absorption rate (SAR). Increased B(1) inhomogeneity at higher magnetic field strength (B(0) > or = 3T) necessitates a preparation sequence that is less sensitive to B(1) variations. For the proposed technique, T(2) weighting in the image is achieved using a segmented B(1)-insensitive rotation (BIR-4) adiabatic pulse by inserting two equally long delays, one after the initial reverse adiabatic half passage (AHP), and the other before the final AHP segment of a BIR-4 pulse. This sequence yields T(2) weighting with both B(1) and B(0) insensitivity. To simultaneously suppress fat signal (at the cost of B(0) insensitivity), the second delay is prolonged so that fat accumulates additional phase due to its chemical shift. Numerical simulations as well as phantom and in vivo image acquisitions were performed to show the efficacy of the proposed technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present the segmentation of the headand neck lymph node regions using a new active contourbased atlas registration model. We propose to segment thelymph node regions without directly including them in theatlas registration process; instead, they are segmentedusing the dense deformation field computed from theregistration of the atlas structures with distinctboundaries. This approach results in robust and accuratesegmentation of the lymph node regions even in thepresence of significant anatomical variations between theatlas-image and the patient's image to be segmented. Wealso present a quantitative evaluation of lymph noderegions segmentation using various statistical as well asgeometrical metrics: sensitivity, specificity, dicesimilarity coefficient and Hausdorff distance. Acomparison of the proposed method with two other state ofthe art methods is presented. The robustness of theproposed method to the atlas selection, in segmenting thelymph node regions, is also evaluated.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Visualization of coronary blood flow in the right and left coronary system in volunteers and patients by means of a modified inversion-prepared bright-blood coronary magnetic resonance angiography (cMRA) sequence. MATERIALS AND METHODS: cMRA was performed in 14 healthy volunteers and 19 patients on a 1.5 Tesla MR system using a free-breathing 3D balanced turbo field echo (b-TFE) sequence with radial k-space sampling. For magnetization preparation a slab selective and a 2D selective inversion pulse were used for the right and left coronary system, respectively. cMRA images were evaluated in terms of clinically relevant stenoses (< 50 %) and compared to conventional catheter angiography. Signal was measured in the coronary arteries (coro), the aorta (ao) and in the epicardial fat (fat) to determine SNR and CNR. In addition, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: The use of a selective inversion pre-pulse allowed direct visualization of the coronary blood flow in the right and left coronary system. The measured SNR and CNR, vessel length, and vessel sharpness in volunteers (SNR coro: 28.3 +/- 5.0; SNR ao: 37.6 +/- 8.4; CNR coro-fat: 25.3 +/- 4.5; LAD: 128.0 cm +/- 8.8; RCA: 74.6 cm +/- 12.4; Sharpness: 66.6 % +/- 4.8) were slightly increased compared to those in patients (SNR coro: 24.1 +/- 3.8; SNR ao: 33.8 +/- 11.4; CNR coro-fat: 19.9 +/- 3.3; LAD: 112.5 cm +/- 13.8; RCA: 69.6 cm +/- 16.6; Sharpness: 58.9 % +/- 7.9; n.s.). In the patient study the assessment of 42 coronary segments lead to correct identification of 10 clinically relevant stenoses. CONCLUSION: The modification of a previously published inversion-prepared cMRA sequence allowed direct visualization of the coronary blood flow in the right as well as in the left coronary system. In addition, this sequence proved to be highly sensitive regarding the assessment of clinically relevant stenotic lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to develop an ambulatory system for the three-dimensional (3D) knee kinematics evaluation, which can be used outside a laboratory during long-term monitoring. In order to show the efficacy of this ambulatory system, knee function was analysed using this system, after an anterior cruciate ligament (ACL) lesion, and after reconstructive surgery. The proposed system was composed of two 3D gyroscopes, fixed on the shank and on the thigh, and a portable data logger for signal recording. The measured parameters were the 3D mean range of motion (ROM) and the healthy knee was used as control. The precision of this system was first assessed using an ultrasound reference system. The repeatability was also estimated. A clinical study was then performed on five unilateral ACL-deficient men (range: 19-36 years) prior to, and a year after the surgery. The patients were evaluated with the IKDC score and the kinematics measurements were carried out on a 30 m walking trial. The precision in comparison with the reference system was 4.4 degrees , 2.7 degrees and 4.2 degrees for flexion-extension, internal-external rotation, and abduction-adduction, respectively. The repeatability of the results for the three directions was 0.8 degrees , 0.7 degrees and 1.8 degrees . The averaged ROM of the five patients' healthy knee were 70.1 degrees (standard deviation (SD) 5.8 degrees), 24.0 degrees (SD 3.0 degrees) and 12.0 degrees (SD 6.3 degrees for flexion-extension, internal-external rotation and abduction-adduction before surgery, and 76.5 degrees (SD 4.1 degrees), 21.7 degrees (SD 4.9 degrees) and 10.2 degrees (SD 4.6 degrees) 1 year following the reconstruction. The results for the pathologic knee were 64.5 degrees (SD 6.9 degrees), 20.6 degrees (SD 4.0 degrees) and 19.7 degrees (8.2 degrees) during the first evaluation, and 72.3 degrees (SD 2.4 degrees), 25.8 degrees (SD 6.4 degrees) and 12.4 degrees (SD 2.3 degrees) during the second one. The performance of the system enabled us to detect knee function modifications in the sagittal and transverse plane. Prior to the reconstruction, the ROM of the injured knee was lower in flexion-extension and internal-external rotation in comparison with the controlateral knee. One year after the surgery, four patients were classified normal (A) and one almost normal (B), according to the IKDC score, and changes in the kinematics of the five patients remained: lower flexion-extension ROM and higher internal-external rotation ROM in comparison with the controlateral knee. The 3D kinematics was changed after an ACL lesion and remained altered one year after the surgery

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.