51 resultados para Neolithic period
Resumo:
BACKGROUND: Activation of the immune system affects the circadian clock. Tumor necrosis factor (TNF) and Interleukin (IL)-1β inhibit the expression of clock genes including Period (Per) genes and the PAR-bZip clock-controlled gene D-site albumin promoter-binding protein (Dbp). These effects are due to cytokine-induced interference of E-box mediated transcription of clock genes. In the present study we have assessed the two E-box binding transcriptional regulators Twist1 and Twist2 for their role in cytokine induced inhibition of clock genes. METHODS: The expression of the clock genes Per1, Per2, Per3 and of Dbp was assessed in NIH-3T3 mouse fibroblasts and the mouse hippocampal neuronal cell line HT22. Cells were treated for 4h with TNF and IL-1β. The functional role of Twist1 and Twist2 was assessed by siRNAs against the Twist genes and by overexpression of TWIST proteins. In luciferase (luc) assays NIH-3T3 cells were transfected with reporter gene constructs, which contain a 3xPer1 E-box or a Dbp E-box. Quantitative chromatin immunoprecipitation (ChIP) was performed using antibodies to TWIST1 and CLOCK, and the E-box consensus sequences of Dbp (CATGTG) and Per1 E-box (CACGTG). RESULTS: We report here that siRNA against Twist1 protects NIH-3T3 cells and HT22 cells from down-regulation of Period and Dbp by TNF and IL-1β. Overexpression of Twist1, but not of Twist2, mimics the effect of the cytokines. TNF down-regulates the activation of Per1-3xE-box-luc, the effect being prevented by siRNA against Twist1. Overexpression of Twist1, but not of Twist2, inhibits Per1-3xE-box-luc or Dbp-E-Box-luc activity. ChIP experiments show TWIST1 induction by TNF to compete with CLOCK binding to the E-box of Period genes and Dbp. CONCLUSION: Twist1 plays a pivotal role in the TNF mediated suppression of E-box dependent transactivation of Period genes and Dbp. Thereby Twist1 may provide a link between the immune system and the circadian timing system.
Resumo:
STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.
Resumo:
INTRODUCTION: Time to fitness for work (TFW) was measured as the number of days that were paid as compensation for work disability during the 4 years after discharge from the rehabilitation clinic in a population of patients hospitalised for rehabilitation after orthopaedic trauma. The aim of this study was to test whether some psychological variables can be used as potential early prognostic factors of TFW. MATERIAL AND METHODS: A Cox proportional hazards model was used to estimate the associations between predictive variables and TFW. Predictors were global health, pain at hospitalisation and pain decrease during the stay (all continuous and standardised by subtracting the mean and dividing by two standard deviations), perceived severity of the trauma and expectation of a positive evolution (both binary variables). RESULTS: Full data were available for 807 inpatients (660 men, 147 women). TFW was positively associated with better perceived health (hazard ratio [HR] 1.16, 95% confidence interval [CI] 1.13-1.19), pain decrease (HR 1.46, 95% CI 1.30-1.64) and expectation of a positive evolution (HR 1.50, 95% CI 1.32-1.70) and negatively associated with pain at hospitalisation (HR 0.67, 95% CI 0.59-0.76) and high perceived severity (HR 0.72, 95% CI 0.61-0.85). DISCUSSION: The present results provide some evidence that work disability during a four-year period after rehabilitation may be predicted by prerehabilitation perceptions of general health, pain, injury severity, as well as positive expectation of evolution.
Resumo:
OBJECTIVES: The aim of this study was to quantify loss to follow-up (LTFU) in HIV care after delivery and to identify risk factors for LTFU, and implications for HIV disease progression and subsequent pregnancies. METHODS: We used data on pregnancies within the Swiss HIV Cohort Study from 1996 to 2011. A delayed clinical visit was defined as > 180 days and LTFU as no visit for > 365 days after delivery. Logistic regression analysis was used to identify risk factors for LTFU. RESULTS: A total of 695 pregnancies in 580 women were included in the study, of which 115 (17%) were subsequent pregnancies. Median maternal age was 32 years (IQR 28-36 years) and 104 (15%) women reported any history of injecting drug use (IDU). Overall, 233 of 695 (34%) women had a delayed visit in the year after delivery and 84 (12%) women were lost to follow-up. Being lost to follow-up was significantly associated with a history of IDU [adjusted odds ratio (aOR) 2.79; 95% confidence interval (CI) 1.32-5.88; P = 0.007] and not achieving an undetectable HIV viral load (VL) at delivery (aOR 2.42; 95% CI 1.21-4.85; P = 0.017) after adjusting for maternal age, ethnicity and being on antiretroviral therapy (ART) at conception. Forty-three of 84 (55%) women returned to care after LTFU. Half of them (20 of 41) with available CD4 had a CD4 count < 350 cells/μL and 15% (six of 41) a CD4 count < 200 cells/μL at their return. CONCLUSIONS: A history of IDU and detectable HIV VL at delivery were associated with LTFU. Effective strategies are warranted to retain women in care beyond pregnancy and to avoid CD4 cell count decline. ART continuation should be advised especially if a subsequent pregnancy is planned.
Resumo:
Odontoid fractures are the most common cervical fractures in the adult population. They represent 9 to 18 % of all cervical fractures and the type II is the most common. The incidence of neurologic deficits (ND) in odontoid fractures varies between 3 to 25%. A recent study showed that patients with ND had a mortality rate increased by 4.72 times and a complication rate higher of 1.18 times. The most common complication in patients with ND was respiratory distress8. Surprisingly, although type II odontoid fractures are frequent cervical fractures, their natural history has been poorly described. Surgery for odontoid fractures is well described. However, there are so far guidelines based on class II and class III evidence only regarding indications for surgery and regarding surgical techniques. The class II guidelines recommend to consider surgical stabilization and fusion for type II odontoid in patients over 50 years of age. The class III recommendations are to first manage non-displaced odontoid type II fracture with external immobilization and that translation of 5mm or more is associated with a high rate of non- union with the conservative treatment and should be treated surgically.