205 resultados para NONSENSE MUTATION
Resumo:
Autosomal recessive cutis laxa type I (ARCL type I) is characterized by generalized cutis laxa with pulmonary emphysema and/or vascular complications. Rarely, mutations can be identified in FBLN4 or FBLN5. Recently, LTBP4 mutations have been implicated in a similar phenotype. Studying FBLN4, FBLN5, and LTBP4 in 12 families with ARCL type I, we found bi-allelic FBLN5 mutations in two probands, whereas nine probands harbored biallelic mutations in LTBP4. FBLN5 and LTBP4 mutations cause a very similar phenotype associated with severe pulmonary emphysema, in the absence of vascular tortuosity or aneurysms. Gastrointestinal and genitourinary tract involvement seems to be more severe in patients with LTBP4 mutations. Functional studies showed that most premature termination mutations in LTBP4 result in severely reduced mRNA and protein levels. This correlated with increased transforming growth factor-beta (TGFβ) activity. However, one mutation, c.4127dupC, escaped nonsense-mediated decay. The corresponding mutant protein (p.Arg1377Alafs(*) 27) showed reduced colocalization with fibronectin, leading to an abnormal morphology of microfibrils in fibroblast cultures, while retaining normal TGFβ activity. We conclude that LTBP4 mutations cause disease through both loss of function and gain of function mechanisms.
Resumo:
Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic diet.
Resumo:
BACKGROUND: Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. METHODS: We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. RESULTS: In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. CONCLUSIONS: This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus.
Resumo:
The introduction of Next Generation Sequencing (NGS) facilitated the task of localizing DNA variation and identifying the genetic cause of yet unsolved Mendelian disorders. Using Whole Exome Capture method and NGS, we identified the causative genetic aberration responsible for a number of monogenic disorders previously undetermined. Due to the novelty of the NGS method we benchmarked different algorithms to assess their merits and defects. This allowed us to establish a pipeline that we successfully used to pinpoint genes responsible for a form of West's syndrome, a Complex Intellectual Disability syndrome associated with patellar dislocation and celiac disease, and correcting some erroneous molecular diagnosis of Alport's syndrome in a Saudi Arabian family.
Resumo:
BackgroundMutations in TNFRSF13B, the gene encoding transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), are found in 10% of patients with common variable immunodeficiency. However, the most commonly detected mutation is the heterozygous change C104R, which is also found in 0.5% to 1% of healthy subjects. The contribution of the C104R mutation to the B-cell defects observed in patients with common variable immunodeficiency therefore remains unclear.ObjectiveWe sought to define the functional consequences of the C104R mutation on B-cell function.MethodsWe performed in vitro studies of TACI C104R expression and signaling. A knock-in mouse with the equivalent mutation murine TACI (mTACI) C76R was generated as a physiologically relevant model of human disease. We examined homozygous and heterozygous C76R mutant mice alongside wild-type littermates and studied specific B-cell lineages and antibody responses to T cell-independent and T cell-dependent challenge.ResultsC104R expression and ligand binding are significantly diminished when the mutant protein is expressed in 293T cells or in patients' cell lines. This leads to defective nuclear factor κB activation, which is proportionally restored by reintroduction of wild-type TACI. Mice heterozygous and homozygous for mTACI C76R exhibit significant B-cell dysfunction with splenomegaly, marginal zone B-cell expansion, diminished immunoglobulin production and serological responses to T cell-independent antigen, and abnormal immunoglobulin synthesis.ConclusionsThese data show that the C104R mutation and its murine equivalent, C76R, can significantly disrupt TACI function, probably through haploinsufficiency. Furthermore, the heterozygous C76R mutation alone is sufficient to disturb B-cell function with lymphoproliferation and immunoglobulin production defects.
Resumo:
Purpose: To assess the clinical phenotype in two consanguineous Tunisian families with non syndromic autosomic recessive retinitis Pigmentosa (arRP) caused by an USH2A mutation.Methods: All accessible members of family A and B were included and underwent full ophthalmic examination with best corrected Snellen visual acuity, kinetic visual field testing, fundus photography, optical coherence tomography and full field electroretinography. Haplotype analyses were used to test linkage in the families to 20 arRP loci, including ABCA4, LRAT, USH2A, RP29, CERKL, CNGA1, CNGB1, CRB1, EYS, RP28, MERTK, NR2E3, PDE6A, PDE6B, RGR, RHO, RLBP1, TULP1. In addition, index patients were sent to AsperOphthalmics for arRP mutation screening.Results: Twenty three patients from the two families were ascertained for the study. Eight of the 23 members were clinically affected with arRP without hearing loss. Age range at baseline was 35 to 63 years (mean age was 46.5 years). For all affected members, night blindness appeared during the second decade. Visual acuity at baseline ranged from 20/50 to 20/32. Kinetic visual field was severely constricted. Fundus examination revealed typical RP changes with bone spicule-shaped pigment deposits in the mid periphery along with atrophy of the retina, narrowing of the vessels and waxy optic discs. Tomograms showed a thinning and even loss the outer nuclear layer of the fovea. ERG was unrecordable in scotopic conditions and the cone responses were markedly hypovolted. Haplotype analysis did not reveal any homozygosity. Screening at AsperOphthalmis showed a compound heterozygous [p.A1953G]+[p.I5126T] in family A and [p.G713R]+[p.W4149R] in family B.Conclusions: For these families, changes were typical of those that have been described in patients with moderate to severe forms of non syndromic recessive RP. Our findings support the need to consider possible involvement of USH2A not only in patients with Usher syndrome but also in patients with non syndromc arRP. Despite consanguinity, the presence of non-homozygous mutants illustrates the complexity of molecular analysis.
Resumo:
BACKGROUND: Mutations in the SCN9A gene cause chronic pain and pain insensitivity syndromes. We aimed to study clinical, genetic, and electrophysiological features of paroxysmal extreme pain disorder (PEPD) caused by a novel SCN9A mutation. METHODS: Description of a 4-generation family suffering from PEPD with clinical, genetic and electrophysiological studies including patch clamp experiments assessing response to drug and temperature. RESULTS: The family was clinically comparable to those reported previously with the exception of a favorable effect of cold exposure and a lack of drug efficacy including with carbamazepine, a proposed treatment for PEPD. A novel p.L1612P mutation in the Nav1.7 voltage-gated sodium channel was found in the four affected family members tested. Electrophysiologically the mutation substantially depolarized the steady-state inactivation curve (V1/2 from -61.8 ± 4.5 mV to -30.9 ± 2.2 mV, n = 4 and 7, P < 0.001), significantly increased ramp current (from 1.8% to 3.4%, n = 10 and 12) and shortened recovery from inactivation (from 7.2 ± 5.6 ms to 2.2 ± 1.5 ms, n = 11 and 10). However, there was no persistent current. Cold exposure reduced peak current and prolonged recovery from inactivation in wild-type and mutated channels. Amitriptyline only slightly corrected the steady-state inactivation shift of the mutated channel, which is consistent with the lack of clinical benefit. CONCLUSIONS: The novel p.L1612P Nav1.7 mutation expands the PEPD spectrum with a unique combination of clinical symptoms and electrophysiological properties. Symptoms are partially responsive to temperature but not to drug therapy. In vitro trials of sodium channel blockers or temperature dependence might help predict treatment efficacy in PEPD.
Resumo:
A clinically significant proportion of couples experience difficulty in conceiving a child. In about half of these cases male infertility is the cause and often genetic factors are involved. Despite advances in clinical diagnostics ∼50% of male infertility cases remain idiopathic. Based on this, further analysis of infertile males is required to identify new genetic factors involved in male infertility. This review focuses on cation channel of sperm (CATSPER)-related male infertility. It is based on PubMed literature searches using the keywords 'CATSPER', 'male infertility', 'male contraception', 'immunocontraception' and 'pharmacologic contraception' (publication dates from January 1979 to December 2009). Previously, contiguous gene deletions including the CATSPER2 gene implicated the sperm-specific CATSPER channel in syndromic male infertility (SMI). Recently, we identified insertion mutations of the CATSPER1 gene in families with recessively inherited nonsyndromic male infertility (NSMI). The CATSPER channel therefore represents a novel human male fertility factor. In this review we summarize the genetic and clinical data showing the role of CATSPER mutation in human forms of NSMI and SMI. In addition, we discuss clinical management and therapeutic options for these patients. Finally, we describe how the CATSPER channel could be used as a target for development of a male contraceptive.
Resumo:
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), which naturally persists in rodents, represents a model for HIV, HBV, and HCV. Cleavage of the viral glycoprotein precursor by membrane-bound transcription factor peptidase, site 1 (Mbtps1 or site-1 protease), is crucial for the life cycle of arenaviruses and therefore represents a potential target for therapy. Recently, we reported a viable hypomorphic allele of Mbtps1 (woodrat) encoding a protease with diminished enzymatic activity. Using the woodrat allele, we examine the role of Mbtps1 during persistent LCMV infection. Surprisingly, Mbtps1 inhibition limits persistent but not acute viral infection and is associated with an organ/cell type-specific decrease in viral titers. Analysis of bone marrow-derived dendritic cells from woodrat mice supports their specific role in resolving persistent viral infection. These results support in vivo targeting of Mbtps1 in the treatment of arenavirus infections and demonstrate a critical role for dendritic cells in persistent viral infections.
Resumo:
Background: Activating mutations of the anaplastic lymphoma receptor tyrosine kinase gene (ALK) were identified in both somatic and familial neuroblastoma. The most common somatic mutation, F1174L, is associated with NMYC amplification and displayed an efficient transforming activity in vivo. In addition, both AKL-F1174L and NMYC were shown cooperate in neuroblastoma tumorigenesis in animal models. To analyse the role of ALK mutations in the oncogenesis of neuroblastoma, ALK wt and various ALK mutants were transduced in murine neural crest stem cells (MONC1). Methods: ALK-wt, and F1174L, and R1275Q mutants were stably expressed by retroviral infection using the pMIGR1 vector in the murine neural crest stem cell line MONC-1, previously immortalised with v-myc, and further implanted subcutaneously or orthotopically in nude mice. Results: Both MONC1-ALK-F1174L and -R1275Q cells displayed a rapid tumour forming capacity upon subcutaneous injection in nude mice compared to control MONC1-MIGR or MONC1 cells. Interestingly, the transforming capacity of the F1174L mutant was much more potent compared to that of R1275Q mutant in murine neural crest stem cells, while ALK-wt was not tumorigenic. In addition, mice implanted orthotopically in the left adrenal gland with MONC1-ALK-F1174L cells developed highly aggressive tumours in 100% of mice within three weeks, while MONC1-Migr or MONC1 derived tumours displayed a longer latency and a reduced tumour take. Conclusions: The activating ALK-F1174L mutant is highly tumorigenic in neural crest stem cells. Nevertheless, we cannot exclude a functional implication of the v-myc oncogene used for MONC1 cells immortalisation. Indeed, the control MONC1-Migr and MONC1 cells were also able to derive subcutaneous and orthotopic tumours, although with considerable reduced efficiency. Further investigations using neural crest stem cell lacking exogenous myc expression are currently on way to assess the exclusive role of ALK mutations in NB oncogenesis.