55 resultados para Muscle-specific Promoters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution of muscle biopsies to the diagnosis of neuromuscular disorders and the indications of various methods of examination are investigated by analysis of 889 biopsies from patients suffering from myopathic and/or neurogenic disorders. Histo-enzymatic studies performed on frozen material as well as immunohistochemistry and electron microscopy allowed to provide specific diagnoses in all the neurogenic disorders (polyneuropathies and motor neuron diseases), whereas one third of myopathies remained uncertain. Confrontation of neuropathological data with the clinical indications for histological investigations shows that muscle biopsies reveal the diagnosis in 25% of the cases (mainly in congenital and metabolic myopathies) and confirm and/or complete the clinical diagnosis in 50%. In the remaining cases with non specific abnormalities neuropathological investigations may help the clinician by excluding well defined neuromuscular disorders. Analysis of performed studies and results of investigations show the contribution and specificity of each method for the diagnosis. Statistical evaluation of this series indicates that cryostat sectioning for histo- and immunochemical and electron microscopy increases the rate of diagnoses of neuromuscular diseases: full investigation was necessary for the diagnosis in 30% of the cases. The interpretation of the wide range of pathological reactions in muscles requires a close cooperation with the clinician.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre-tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle is considered to be a major site of energy expenditure and thus is important in regulating events affecting metabolic disorders. Over the years, both in vitro and in vivo approaches have established the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in fatty acid metabolism and energy expenditure in skeletal muscles. Pharmacological activation of PPARβ/δ by specific ligands regulates the expression of genes involved in lipid use, triglyceride hydrolysis, fatty acid oxidation, energy expenditure, and lipid efflux in muscles, in turn resulting in decreased body fat mass and enhanced insulin sensitivity. Both the lipid-lowering and the anti-diabetic effects exerted by the induction of PPARβ/δ result in the amelioration of symptoms of metabolic disorders. This review summarizes the action of PPARβ/δ activation in energy metabolism in skeletal muscles and also highlights the unexplored pathways in which it might have potential effects in the context of muscular disorders. Numerous preclinical studies have identified PPARβ/δ as a probable potential target for therapeutic interventions. Although PPARβ/δ agonists have not yet reached the market, several are presently being investigated in clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Prospective evaluation of tracheo-carinal airway reconstructions using pedicled extrathoracic muscle flaps for closing airway defects after non-circumferential resections and after carinal resections as part of the reconstruction for alleviation of anastomotic tension. METHODS: From January 1996 to June 2006, 41 patients underwent tracheo-carinal airway reconstructions using 45 extrathoracic muscle flaps (latissimus dorsi, n=25; serratus anterior, n=18; pectoralis major, n=2) for closing airway defects resulting from (a) bronchopleural fistulas (BPF) with short desmoplastic bronchial stumps after right upper lobectomy (n=1) and right-sided (pleuro) pneumonectomy (n=13); (b) right (n=9) and left (n=3) associated with partial carinal resections for pre-treated centrally localised tumours; (c) partial non-circumferential tracheal resections for pre-treated tracheal tumours, tracheo-oesophageal fistulas (TEF) and chronic tracheal injury with tracheomalacia (n=11); (d) carinal resections with the integration of a muscle patch in specific parts of the anastomotic reconstruction for alleviation of anastomotic tension (n=4). The airway defects ranged from 2 x 1 cm to 8 x 4 cm and involved up to 50% of the airway circumference. The patients were followed by clinical examination, repeated bronchoscopy, pulmonary function testing and CT scans. The minimum follow-up time was 6 months. RESULTS: Ninety-day mortality was 7.3% (3/41 patients). Four patients (9.7%) sustained muscle flap necrosis requiring re-operation and flap replacement without subsequent mortality, airway dehiscence or stenosis. Airway dehiscence was observed in 1/41 patients (2.4%) and airway stenosis in 1/38 surviving patients (2.6%) responding well to topical mitomycin application. Follow-up on clinical grounds, by CT scans and repeated bronchoscopy, revealed airtight, stable and epithelialised airways and no recurrence of BPF or TEF in all surviving patients. CONCLUSIONS: Tracheo-carinal airway defects can be closed by use of pedicled extrathoracic muscle flaps after non-circumferential resections and after carinal resections with the muscle patch as part of the reconstruction for alleviation of anastomotic tension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE-Chronic exercise and obesity both increase intra-myocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype.RESEARCH DESIGN AND METHODS-A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies.RESULTS-DAG content in the NWA group was approximately twofold higher than in the OBS group and similar to 50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, DAGs, and insulin sensitivity.CONCLUSIONS-Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance. Diabetes 60:2588-2597, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several psychiatric disorders have been associated with CpG methylation changes in CG rich promoters of the brain-derived neurotrophic factor (BDNF) mainly by extracting DNA from peripheral blood cells. Whether changes in peripheral DNA methylation can be used as a proxy for brain-specific alterations remains an open question. In this study we aimed to compare DNA methylation levels in BDNF promoter regions in human blood cells, muscle and brain regions using bisulfite-pyrosequencing. We found a significant correlation between the levels of BDNF promoter I methylation measured in quadriceps and vPFC tissues extracted from the same individuals (n = 98, Pearson, r = 0.48, p = 4.5 × 10(-7)). In the hippocampus, BDNF promoter I and IV methylation levels were strongly correlated (Pearson, n = 37, r = 0.74, p = 1.4 × 10(-7)). We found evidence for sex-dependent effect on BDNF promoter methylation levels in the various tissues and blood samples. Taken together, these data indicate a strong intra-individual correlation between peripheral and brain tissue. They also suggest that sex determines methylation patterns in BDNF promoter region across different types of tissue, including muscle, brain, and blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">The efficacy of antitumoral responses can be increased using combinatorial vaccine strategies. We recently showed that vaccination could be optimized by local administration of diverse molecular or bacterial agents to target and augment antitumoral CD8 T cells in the genital mucosa (GM) and increase regression of cervical cancer in an animal model. Non muscle-invasive bladder cancer is another disease that is easily amenable to local therapies. In contrast to data obtained in the GM, in this study we show that intravesical (IVES) instillation of synthetic toll-like receptor (TLR) agonists only modestly induced recruitment of CD8 T cells to the bladder. However, IVES administration of Ty21a, a live bacterial vaccine against typhoid fever, was much more effective and increased the number of total and vaccine-specific CD8 T cells in the bladder approximately 10 fold. Comparison of chemokines induced in the bladder by either CpG (a TLR-9 agonist) or Ty21a highlighted the preferential increase in complement component 5a, CXCL5, CXCL2, CCL8, and CCL5 by Ty21a, suggesting their involvement in the attraction of T cells to the bladder. IVES treatment with Ty21a after vaccination also significantly increased tumor regression compared to vaccination alone, resulting in 90% survival in an orthotopic murine model of bladder cancer expressing a prototype tumor antigen. Our data demonstrate that combining vaccination with local immunostimulation may be an effective treatment strategy for different types of cancer and also highlight the great potential of the Ty21a vaccine, which is routinely used worldwide, in such combinatorial therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les ß2-agonistes sont des bronchodilatateurs qui sont prescrits pour traiter l'asthme et l'asthme induite par l'exercice (AIE). Il est relevant de comprendre s'il y a une utilisation adéquate de ces médicaments pour traiter l'AIE chez les athlètes de haut niveau, ou s'ils sont utilisés pour leur potentiel effet ergogénique sur la performance physique. Ce travail examine les actions centrales et périphériques sur la fonction contractile du muscle squelettique humain in vivo induits par l'ingestion d'une dose thérapeutique de ß2- agonistes. Le premier but était d'évaluer si les ß2-agonistes exerçaient une potentialisation de la contractilité du muscle humain et/ou un effet "anti¬fatigue" comme observé dans le modèle animal. Les résultats n'ont fournit aucune évidence d'une potentialisation sur le muscle squelettique humain in vivo non-fatigué et fatigué induit par l'administration orale de ß2-agonistes. Tout effet excitateur exercé par ce traitement sur le système nerveux central a été aussi exclu. Le deuxième but était de déterminer si les ß2-agonistes affaiblissaient la contractilité du muscle squelettique humain à contraction lente, et d'évaluer si ce changement pouvait interférer avec le contrôle moteur au muscle. Les résultats ont montré que les ß2-agonistes affaiblissent la contractilité des fibres lentes, comme conséquence de l'effet lusitrope positif se produisant dans ces fibres. La capacité de développer une force maximale n'est pas réduite par le traitement, même si une augmentation de la commande centrale au muscle est requise pour produire la même force lors de contractions sous-maximales. Le but final était d'examiner si une adaptation du contrôle moteur était re¬quis pour compenser l'affaiblissement des fibres lentes exercée par les ß2- agonistes pendant un exercice volontaire, et de déterminer si cette adaptation centrale pouvait accroître la fatigue musculaire. Malgré le fait que les résultats confirment l'effet affaiblissant induit par les ß2-agonistes, ce changement contractile n'influence pas le contrôle moteur au muscle pendant les contractions sous-maximales de l'exercice fatiguant, et n'accroît pas le degré de fatigue. Ce travail éclaircit les actions spécifiques des ß2-agonistes sur la fonction contractile du muscle squelettique humain in vivo et leurs influence sur le contrôle moteur. Les mécanismes sous-jacents de l'action ergogénique sur la performance physique produit par les ß2-agonistes sont aussi élucidés. -- ß2-Agonists are bronchodilators that are widely prescribed for the treatment of asthma and exercise-induced asthma (EIA). The extensive use of ß2-agonists by competitive athletes has raised the question as to whether there is a valid need for this class of drugs because of EIA or a misuse because of their potential ergogenic effect on exercise performance. This work investigated the central and peripheral actions that were elicited by the ingestion of a therapeutic dose of ß2-agonists on the contractility of human skeletal muscle in vivo. The first objective was to investigate whether ß2-agonists would potentiate muscle contractility and/or exert the "anti-fatigue" effect observed in animal models. The findings did not provide any evidence for the ß2-agonist-induced potentiation of in vivo human non-fatigued and fatigued skeletal muscle. Moreover, the findings exclude any excitatory action of this treatment on the central nervous system. The second objective was to explore whether the weakening action on the contractile function would occur after ß2-agonist intake in human slow-twitch skeletal muscle and to ascertain whether this contractile change may interfere with muscle motor control. The results showed that ß2-agonists weaken the contractility of slow-twitch muscle fibres as a result of the lusitropic effect occurring in these fibres. The maximal force-generating capacity of the skeletal muscle is not reduced by ß2-agonists, even though an augmented neural drive to muscle is required to develop the same force during submaximal contractions. The final objective was to examine whether a motor control adjustment is needed to compensate for the ß2-agonist-induced weakening effect on slow- twitch fibres during a voluntary exercise and to also assess whether this central adaptation could exaggerate muscle fatigue. Despite the findings confirming the occurrence of the weakening action that is exerted by ß2- agonists, this contractile change did not interfere with muscle motor control during the submaximal contractions of the fatiguing exercise and did not augment the degree of the muscle fatigue. This work contributes to a better understanding of the specific actions of ß2-agonists on the contractile function of in vivo human skeletal muscles and their influence on motor control. In addition, the findings elucidate mechanisms that could underlie the ergogenic effect that is exerted by ß2- agonists on physical performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mapping perturbed molecular circuits that underlie complex diseases remains a great challenge. We developed a comprehensive resource of 394 cell type- and tissue-specific gene regulatory networks for human, each specifying the genome-wide connectivity among transcription factors, enhancers, promoters and genes. Integration with 37 genome-wide association studies (GWASs) showed that disease-associated genetic variants-including variants that do not reach genome-wide significance-often perturb regulatory modules that are highly specific to disease-relevant cell types or tissues. Our resource opens the door to systematic analysis of regulatory programs across hundreds of human cell types and tissues (http://regulatorycircuits.org).