62 resultados para Mucoadhesive polymers
Resumo:
Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block
Resumo:
Functional specialization is tightly linked to the ability of eukaryotic cells to acquire a particular shape. Cell morphogenesis, in turn, relies on the capacity to establish and maintain cell "polarity", which is achieved by orienting the trafficking of signaling molecules and organelles towards specific cellular locations and/or membrane domains. The "oriented" transport is based upon cytoskeletal polymers, microtubules and actin filaments, which serve as tracks for molecular motors. These latter generate motion that is translated either into pulling forces or directed transport. Fission yeast, a rod-like unicellular eukaryote, shapes itself by restricting growth at cell tips through the concerted activity of microtubules and actin cables. Microtubules, which assemble into 2-6 bundles and run parallel to the long axis of the cell, serve to orient growth to the tips. Growth is supported by the actin cytoskeleton, which provides tracks, the cables, for motor-based transport of secretory vesicles. The molecular motors, which bind cargos and deliver them to the tips along cables, are also known as type V myosins (hereafter indicated as myosin V). How the bundles of parallel actin filaments, i.e. the cables, extend from the tips through the cell and whether they serve any other purpose, besides providing tracks, is poorly understood. It is also unclear how the crosstalk between the two cytoskeletal systems is achieved. These are the basic questions I addressed during my PhD. The first part of the thesis work (Chapter two) suggests that the sole function of actin cables in polarized growth is to serve as tracks for motors. The data indicate that cells may have evolved two cytoskeletal systems to provide robustness to the polarization process but in principle a unique cytoskeleton might have been able to direct and support polarized growth. How actin cables are organized within the cell to optimize cargo transport is addressed later on (Chapter three). The major finding, based on the actin cable defect of cells lacking myosin Vs, is that actin filaments self-organize through the activity of the transport motors. In fact, by delivering cargos to cell tips and exerting physical pulling forces on actin filaments, Myosin Vs contribute not only to polarize cargo transport but also actin tracks. Among the cargos transported by Myosin V, which may be relevant to its function in organizing cables, there is likely the endoplasmic reticulum (ER). Actin cables, which run parallel to cortical ER, may serve as tracks for Myosin V. Myosin V-driven displacement, in turn, may account for the dynamic expansion and organization of ER during polarized growth as suggested in Chapter four. The last part of the work (Chapter five) highlights the existence of a crosstalk between actin and microtubules. In absence of myosin V, indeed, microtubules contribute to actin cable organization, likely playing a scaffolding/tethering function. Whether or not the kinesin 1, Klp3, plays any role in such process has to be demonstrated. In conclusion the work proposes a novel role for myosin Vs in actin organization, besides its transport function, and provides molecular tools to further dissect the role of this type of myosin in fission yeast. - La spécialisation fonctionnelle est étroitement connectée à la capacité des cellules eucaryotes d'acquérir une forme particulière. La morphogenèse cellulaire à son tour, est basée sur la capacité d'établir et de maintenir la polarité cellulaire, polarité réalisée en orientant le trafic des molécules signales et des organelles vers des zones cellulaires spécifiques. Ce transport directionnel dépend des polymères du cytosquelette, microtubules et microfilaments, qui servent comme des voies pour les moteurs moléculaires. Ces derniers engendrent du mouvement, traduit soit en force de traction soit en transport directionnel. La levure fissipare, un eucaryote unicellulaire en forme de bâtonnet, acquière sa forme en limitant sa croissance aux extrémités par l'action concertée des microtubules et de l'actine. Les microtubules, qui s'assemblent de façon antiparallèle et parcourent la cellule parallèlement à l'axe longitudinal, servent à orienter la croissance aux extrémités. Cette croissance est permise par le cytosquelette d'actine, fournissant des voies, les câbles, pour le transport actif des vésicules de sécrétion. Les moteurs moléculaires, responsables de ce transport actif sont aussi appelés myosines de type V (par la suite appelés myosines V). La manière dont ces câbles s'étendent depuis l'extrémité jusqu'à l'intérieur de la cellule est peu connue. De plus, on ignore également si ces câbles présentent une fonction autre que le transport. L'interaction entre les deux cytosquelettes est également obscure. Ce sont ces questions de base auxquelles j'ai tenté de répondre lors de ma thèse. La première partie de cette thèse (chapitre II) suggère que les câbles d'actine, pendant la croissance polarisée, fonctionnent uniquement comme des voies pour les moteurs moléculaires. Les données indiqueraient que les cellules ont fait évoluer deux systèmes de cytosquelette pour assurer plus de robustesse au processus de polarisation, bien que, comme nous le verrons, un système unique est suffisant. Au chapitre III, nous verrons comment les câbles d'actine sont organisés à l'intérieur de la cellule afin d'optimiser le transport des cargo. La découverte majeure, réalisée en observant des cellules dont la myosine V fait défaut, est que ces filaments d'actine s'auto organisent grâce au passage des moteurs moléculaires le long de ces voies. En réalité, en délivrant les cargos aux extrémités de la cellule et en exerçant des forces de traction sur les câbles, les myosines V contribuent non seulement à polariser le transport mais également à polariser les voies elles mêmes. Nous verrons également au chapitre IV, que parmi les cargos importants pour l'organisation des câbles, il y aurait le réticulum endoplasmique (RE). En effet, les câbles d'actine, qui s'étalent parallèlement au RE cortical, pourraient servir comme voie pour la myosine V. Cette dernière en retour pourrait être responsable de l'expansion dynamique et de l'organisation du RE pendant la croissance polarisée.
Resumo:
Most bacterial chromosomes contain homologs of plasmid partitioning (par) loci. These loci encode ATPases called ParA that are thought to contribute to the mechanical force required for chromosome and plasmid segregation. In Vibrio cholerae, the chromosome II (chrII) par locus is essential for chrII segregation. Here, we found that purified ParA2 had ATPase activities comparable to other ParA homologs, but, unlike many other ParA homologs, did not form high molecular weight complexes in the presence of ATP alone. Instead, formation of high molecular weight ParA2 polymers required DNA. Electron microscopy and three-dimensional reconstruction revealed that ParA2 formed bipolar helical filaments on double-stranded DNA in a sequence-independent manner. These filaments had a distinct change in pitch when ParA2 was polymerized in the presence of ATP versus in the absence of a nucleotide cofactor. Fitting a crystal structure of a ParA protein into our filament reconstruction showed how a dimer of ParA2 binds the DNA. The filaments formed with ATP are left-handed, but surprisingly these filaments exert no topological changes on the right-handed B-DNA to which they are bound. The stoichiometry of binding is one dimer for every eight base pairs, and this determines the geometry of the ParA2 filaments with 4.4 dimers per 120 A pitch left-handed turn. Our findings will be critical for understanding how ParA proteins function in plasmid and chromosome segregation.
Resumo:
Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.
Resumo:
The SLC2 family of glucose and polyol transporters comprises 13 members, the glucose transporters (GLUT) 1-12 and the H(+)- myo-inositol cotransporter (HMIT). These proteins all contain 12 transmembrane domains with both the amino and carboxy-terminal ends located on the cytoplasmic side of the plasma membrane and a N-linked oligosaccharide side-chain located either on the first or fifth extracellular loop. Based on sequence comparison, the GLUT isoforms can be grouped into three classes: class I comprises GLUT1-4; class II, GLUT6, 8, 10, and 12 and class III, GLUT5, 7, 9, 11 and HMIT. Despite their sequence similarity and the presence of class-specific signature sequences, these transporters carry various hexoses and HMIT is a H(+)/ myo-inositol co-transporter. Furthermore, the substrate transported by some isoforms has not yet been identified. Tissue- and cell-specific expression of the well-characterized GLUT isoforms underlies their specific role in the control of whole-body glucose homeostasis. Numerous studies with transgenic or knockout mice indeed support an important role for these transporters in the control of glucose utilization, glucose storage and glucose sensing. Much remains to be learned about the transport functions of the recently discovered isoforms (GLUT6-13 and HMIT) and their physiological role in the metabolism of glucose, myo-inositol and perhaps other substrates.
Resumo:
UV−excimer laser photoablation was used, in combination with surface blocking techniques, to pattern proteins on the surfaces of polyimide and poly(ethylene terephthalate). This technique involves physical adsorption of avidin through laser-defined openings in low-temperature laminates or adsorbed protein blocking layers. Visualization of biomolecular patterns were monitored using avidin and fluorescein-labeled biotin as a model receptor−ligand couple. Adsorbed proteins could be shown to bind to UV-laser-treated polymer surfaces up to three times higher than on commercially available polymers. UV-laser photoablation was also used for the generation of three-dimensional structure, which leads to the possibility of biomolecule patterning within polymer-based microanalytical systems. The simplicity and easy handling of the described technique facilitate its application in microdiagnostic devices.
Resumo:
Plants naturally produce the lipid-derived polyester cutin, which is found in the plant cuticle that is deposited at the outermost extracellular matrix of the epidermis covering nearly all aboveground tissues. Being at the interface between the cell and the external environment, cutin and the cuticle play important roles in the protection of plants from several stresses. A number of enzymes involved in the synthesis of cutin monomers have recently been identified, including several P450s and one acyl-CoA synthetase, thus representing the first steps toward the understanding of polyester formation and, potentially, polyester engineering to improve the tolerance of plants to stresses, such as drought, and for industrial applications. However, numerous processes underlying cutin synthesis, such as a controlled polymerization, still remain elusive. Suberin is a second polyester found in the extracellular matrix, most often synthesized in root tissues and during secondary growth. Similar to cutin, the function of suberin is to seal off the respective tissue to inhibit water loss and contribute to resistance to pathogen attack. Being the main constituent of cork, suberin is a plant polyester that has already been industrially exploited. Genetic engineering may be worth exploring in order to change the polyester properties for either different applications or to increase cork production in other species. Polyhydroxyalkanoates (PHAs) are attractive polyesters of 3-hydroxyacids because of their properties as bioplastics and elastomers. Although PHAs are naturally found in a wide variety of bacteria, biotechnology has aimed at producing these polymers in plants as a source of cheap and renewable biodegradable plastics. Synthesis of PHA containing various monomers has been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modified in order to achieve this, including the isoprenoid pathway, the fatty acid biosynthetic pathway, and the fatty acid β-oxidation pathway. PHA synthesis has been demonstrated in a number of plants, including monocots and dicots, and up to 40% PHA per gram dry weight has been demonstrated in Arabidopsis thaliana. Despite some successes, production of PHA in crop plants remains a challenging project. PHA synthesis at high level in vegetative tissues, such as leaves, is associated with chlorosis and reduced growth. The challenge for the future is to succeed in synthesis of PHA copolymers with a narrow range of monomer compositions, at levels that do not compromise plant productivity. This goal will undoubtedly require a deeper understanding of plant biochemical pathways and how carbon fluxes through these pathways can be manipulated, areas where plant "omics" can bring very valuable contributions.
Resumo:
In recent years there has been growing interest in the question of how the particular topology of polymeric chains affects their overall dimensions and physical behavior. The majority of relevant studies are based on numerical simulation methods or analytical treatment; however, both these approaches depend on various assumptions and simplifications. Experimental verification is clearly needed but was hampered by practical difficulties in obtaining preparative amounts of knotted or catenated polymers with predefined topology and precisely set chain length. We introduce here an efficient method of production of various single-stranded DNA knots and catenanes that have the same global chain length. We also characterize electrophoretic migration of the produced single-stranded DNA knots and catenanes with increasing complexity.
Resumo:
Two types of hydrogel microspheres have been developed. Fast ionotropic gelation of sodium alginate (Na-alg) in the presence of calcium ions was combined with slow covalent cross-linking of poly(ethylene glycol) (PEG) derivatives. For the first type, the fast obtainable Ca-alg hydrogel served as spherical matrix for the simultaneously occurring covalent cross-linking of multi-arm PEG derivative. A two-component interpenetrating network was formed in one step upon extruding the mixture of the two polymers into the gelation bath. For the second type, heterobifunctional PEG was grafted onto Na-alg prior to gelation. Upon extrusion of the polymer solution into the gelation bath, fast Ca-alg formation ensured the spherical shape and was accompanied by cross-linker-free covalent cross-linking of the PEG side chains. Thus, one-component hydrogel microspheres resulted. We present the physical properties of the hydrogel microspheres and demonstrate the feasibility of cell microencapsulation for both types of polymer networks.
Simulations of action of DNA topoisomerases to investigate boundaries and shapes of spaces of knots.
Resumo:
The configuration space available to randomly cyclized polymers is divided into subspaces accessible to individual knot types. A phantom chain utilized in numerical simulations of polymers can explore all subspaces, whereas a real closed chain forming a figure-of-eight knot, for example, is confined to a subspace corresponding to this knot type only. One can conceptually compare the assembly of configuration spaces of various knot types to a complex foam where individual cells delimit the configuration space available to a given knot type. Neighboring cells in the foam harbor knots that can be converted into each other by just one intersegmental passage. Such a segment-segment passage occurring at the level of knotted configurations corresponds to a passage through the interface between neighboring cells in the foamy knot space. Using a DNA topoisomerase-inspired simulation approach we characterize here the effective interface area between neighboring knot spaces as well as the surface-to-volume ratio of individual knot spaces. These results provide a reference system required for better understanding mechanisms of action of various DNA topoisomerases.
Resumo:
Sequentially along B cell differentiation, the different classes of membrane Ig heavy chains associate with the Ig alpha/Ig beta heterodimer within the B cell receptor (BCR). Whether each Ig class conveys specific signals adapted to the corresponding differentiation stage remains debated. We investigated the impact of the forced expression of an IgA-class receptor throughout murine B cell differentiation by knocking in the human C alpha Ig gene in place of the S mu region. Despite expression of a functional BCR, homozygous mutant mice showed a partial developmental blockade at the pro-B/pre-BI and large pre-BII cell stages, with decreased numbers of small pre-BII cells. Beyond this stage, peripheral B cell compartments of reduced size developed and allowed specific antibody responses, whereas mature cells showed constitutive activation and a strong commitment to plasma cell differentiation. Secreted IgA correctly assembled into polymers, associated with the murine J chain, and was transported into secretions. In heterozygous mutants, cells expressing the IgA allele competed poorly with those expressing IgM from the wild-type allele and were almost undetectable among peripheral B lymphocytes, notably in gut-associated lymphoid tissues. Our data indicate that the IgM BCR is more efficient in driving early B cell education and in mucosal site targeting, whereas the IgA BCR appears particularly suited to promoting activation and differentiation of effector plasma cells.
Resumo:
Anticytokine auto-vaccination is a powerful tool for the study of cytokine functions in vivo but has remained rather esoteric as a result of numerous technical difficulties. We here describe a two-step procedure based on the use of OVA multimers purified by size exclusion chromatography after incubation with glutaraldehyde at pH 6. When such polymers are incubated with a target protein at pH 8.5 to deprotonate reactive amines, complexes are formed that confer immunogenicity to self-antigens. The chemokine GCP-2/CXCL6, the cytokines GM-CSF, IL-17F, IL-17E/IL-25, IL-27, and TGF-β1, and the MMP-9/gelatinase B are discussed as examples. mAb, derived from such immunized mice, have obvious advantages for in vivo studies of the target proteins. Using a mAb against GCP-2, obtained by the method described here, we provide the first demonstration of the major role played by this chemokine in rapid neutrophil mobilization after Leishmania major infection. Pre-activated OVA multimers reactive with amine residues thus provide an efficient carrier for auto-vaccination against 9-90 kDa autologous proteins.
Resumo:
Gel electrophoresis can be used to separate nicked circular DNA molecules of equal length but forming different knot types. At low electric fields, complex knots drift faster than simpler knots. However, at high electric field the opposite is the case and simpler knots migrate faster than more complex knots. Using Monte Carlo simulations we investigate the reasons of this reversal of relative order of electrophoretic mobility of DNA molecules forming different knot types. We observe that at high electric fields the simulated knotted molecules tend to hang over the gel fibres and require passing over a substantial energy barrier to slip over the impeding gel fibre. At low electric field the interactions of drifting molecules with the gel fibres are weak and there are no significant energy barriers that oppose the detachment of knotted molecules from transverse gel fibres.
Resumo:
Surface characteristics (area, chemical reactivity) play an important role in cell response to nanomaterials. The aim of this study was to evaluate the oxidative and inflammatory effects of multi−wall carbon nanotubes (MWCNT) uncoated (P0) or coated with carboxylic polyacid or polystyrene polybutadiene polymetacrylate of methyl polymers (P1 and P2 respectively) on murine macrophages (RAW 264.7 cell line). Carbon black nanoparticles (CB, diameter 95 nm) and crocidolite fibers (diameter: 80 nm, length: < 10 μm) were used as controls. Surface functional groups present on MWCNTs were analyzed by Knudsen flow reactor. The amount of acidic sites was P1> P0> P2, for basic sites was P0> P1>> P2 and for oxidizable sites was P0> P2> P1. In contact with cells, P2 formed smaller aggregates than P0 and P1, which were of similar size. Optical microscopy showed the formation of vacuoles after exposure only to P0, P1 and crocidolite. Incubation of cells with P0, P1 and crocidolite fibers induced a significant and similar decrease in metabolic activity, whereas P2 and CB had no effect. Cell number and membrane permeability were unmodified by incubation with the different particles. Incubation of macrophages with P0, P1 and crocidolite induced a dose− and time−dependent increase in mRNA expression of oxidative stress marker (HO−1, GPX1) and inflammatory mediators (TNF−a, MIP−2). No such responses were observed with P2 and CB. In conclusion, MWCNT coated with a carboxylic polyacid polymer exerted similar oxidative and inflammatory effects to uncoated MWCNT. By contrast, no such effects were observed with MWCNT coated with a polystyrene−based polymer. This kind of coating could be useful to decrease MWCNT toxicity.
Resumo:
Information on the effects of released wild-type or genetically engineered bacteria on resident bacterial communities is important to assess the potential risks associated with the introduction of these organisms into agroecosystems. The rifampicin-resistant biocontrol strain Pseudomonas fluorescens CHA0-Rif and its derivative CHA0-Rif/pME3424, which has improved biocontrol activity and enhanced production of the antibiotics 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt), were introduced into soil microcosms and the culturable bacterial community developing on cucumber roots was investigated 10 and 52 days later. The introduction of either of the two strains led to a transiently enhanced metabolic activity of the bacterial community on glucose dimers and polymers as measured with BIOLOG GN plates, but natural succession between the two sampling dates changed the metabolic activity of the bacterial community more than did the inoculants. The introduced strains did not significantly affect the abundance of dominant genotypic groups of culturable bacteria discriminated by restriction analysis of amplified 16S rDNA of 2500 individual isolates. About 30-50% of the resident bacteria were very sensitive to Phl and Plt, but neither the wild-type nor CHA0-Rif/pME3424 changed the proportion of sensitive and resistant bacteria in situ. In microcosms with a synthetic bacterial community, both biocontrol strains reduced the population of a strain of Pseudomonas but did not affect the abundance of four other bacterial strains including two highly antibiotic-sensitive isolates. We conclude that detectable perturbations in the metabolic activity of the resident bacterial community caused by the biocontrol strain CHA0-Rif are (i) transient, (ii) similar for the genetically improved derivative CHA0-Rif/pME3424 and (iii) less pronounced than changes in the community structure during plant growth.