91 resultados para Metabolic flux analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The taxonomy of Bambusoideae is in a state of flux and phylogenetic studies are required to help resolve systematic issues. Over 60 taxa, representing all subtribes of Bambuseae and related non-bambusoid grasses were sampled. A combined analysis of five plastid DNA regions, trnL intron, trnL-F intergenic spacer, atpB-rbcL intergenic spacer, rps16 intron, and matK, was used to study the phylogenetic relationships among the bamboos in general and the woody bamboos in particular. Within the BEP clade (Bambusoideae s.s., Ehrhartoideae, Pooideae), Pooideae were resolved as sister to Bambusoideae s.s. Tribe Bambuseae, the woody bamboos, as currently recognized were not monophyletic because Olyreae, the herbaceous bamboos, were sister to tropical Bambuseae. Temperate Bambuseae were sister to the group consisting of tropical Bambuseae and Olyreae. Thus, the temperate Bambuseae would be better treated as their own tribe Arundinarieae than as a subgroup of Bambuseae. Within the tropical Bambuseae, neotropical Bambuseae were sister to the palaeotropical and Austral Bambuseae. In addition, Melocanninae were found to be sister to the remaining palaeotropical and Austral Bambuseae. We discuss phylogenetic and morphological patterns of diversification and interpret them in a biogeographic context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resting metabolic rate (RMR) and body composition of 130 obese and nonobese prepubertal children, aged 6 to 10 years, were assessed by indirect calorimetry and skin-fold thickness, respectively. The mean (+/- SD) RMR was 4619 +/- 449 kJ.day-1 (164 +/- 31 kJ.kg body weight-1 x day-1) in the 62 boys and 4449 +/- 520 kJ.day-1 (147 +/- 32 kJ.kg body weight-1 x day-1) in the 68 girls. Fat-free mass was the best single predictor of RMR (R2 = 0.64; p < 0.001). Step-down multiple regression analysis, with independent variables such as age, gender, weight, and height, allowed several RMR predictive equations to be developed. An equation for boys is as follows: RMR (kJ.day-1) = 1287 + 28.6 x Weight(kg) + 23.6 x Height(cm) - 69.1 x Age(yr) (R2 = 0.58; p < 0.001). An equation for girls is as follows: RMR (kJ.day-1 = 1552 + 35.8 x Weight (kg) + 15.6 x Height (cm) - 36.3 x Age (yr) (R2 = 0.69; p < 0.001). Comparison between the measured RMR and that predicted by currently used formulas showed that most of these equations tended to overestimate the RMR of both genders, especially in overweight children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deficiency of propionyl CoA carboxylase (PCC), a dodecamer of alpha and beta subunits, causes inherited propionic acidemia. We have studied, at the molecular level, PCC in 54 patients from 48 families comprised of 96 independent alleles. These patients of various ethnic backgrounds came from research centers and hospitals in Germany, Austria and Switzerland. The thorough clinical characterization of these patients was described in the accompanying paper (Grünert et al. 2012). In all 54 patients, many of whom originated from consanguineous families, the entire PCCB gene was examined by genomic DNA sequencing and in 39 individuals the PCCA gene was also studied. In three patients we found mutations in both PCC genes. In addition, in many patients RT-PCR analysis of lymphoblast RNA, lymphoblast enzyme assays, and expression of new mutations in E.coli were carried out. Eight new and eight previously detected mutations were identified in the PCCA gene while 15 new and 13 previously detected mutations were found in the PCCB gene. One missense mutation, p.V288I in the PCCB gene, when expressed in E.coli, yielded 134% of control activity and was consequently classified as a polymorphism in the coding region. Numerous new intronic polymorphisms in both PCC genes were identified. This study adds a considerable amount of new molecular data to the studies of this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes and the related metabolic syndrome are multi system disorders that result from improper interactions between various cell types. Even though the underlying mechanism remains to be fully understood, it is most likely that both the long and the short distance range cell interactions, which normally ensure the physiologic functioning of the pancreas, and its relationships with the insulin-targeted organs, are altered. This review focuses on the short-range type of interactions that depend on the contact between adjacent cells and, specifically, on the interactions that are dependent on connexins. The widespread distribution of these membrane proteins, their multiple modes of action, and their interactions with conditions/molecules associated to both the pathogenesis and the treatment of the 2 main forms of diabetes and the metabolic syndrome, make connexins an essential part of the chain of events that leads to metabolic diseases. Here, we review the present state of knowledge about the molecular and cell biology of the connexin genes and proteins, their general mechanisms of action, the roles specific connexin species play in the endocrine pancreas and the major insulin-targeted organs, under physiological and patho-physiological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction. In this context, cells having essentially an oxidative profile exhibit pronounced extracellular lactate uptake and consumption. However, they can be turned into cells with prominent aerobic glycolysis by selectively reducing the aforementioned parameters. In the case of primarily oxidative cells, we also examined the role of glycolysis and lactate transport in providing pyruvate to mitochondria in order to sustain oxidative phosphorylation. The results show that changes in lactate transport capacity and extracellular lactate concentration within the range described experimentally can sustain enhanced oxidative metabolism upon activation. Such a demonstration provides key elements to understand why certain brain cell types constitutively adopt a particular metabolic profile and how specific features can be altered under different physiological and pathological conditions in order to face evolving energy demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thousands of chemical compounds enter the natural environment but many have unknown effects and consequences, in particular at low concentrations. This thesis work contributes to our understanding of pollution effects by using bacteria as test organisms. Bacteria are important for this question because some of them degrade and transform pollutants into less harmful compounds, but secondly because they themselves can be inhibited in their reproduction by exposure to toxic compounds. When inhibitory effects occur this may change the composition of the microbial com¬munity in the long run, leading to altered or diminished ecosystem services by those communities. As a result chemicals of anthropogenic origin may accumulate and per¬sist in the environment, and finally, affect higher organisms as well. In addition to acquiring basic understanding of pollutant effects at low concentrations on bacterial communities an applied goal of this thesis work was to develop bacteria-based tests to screen new organic chemicals for toxicity and biodégradation. In the first part of this work we developed a flow cytometry-based assay on SYT09 plus ethidium-bromide or propidium-iodide stained cells of Pseudomonas ûuorescens exposed or not to a variety of pollutants under oligotrophic growth conditions. Flow cytometry (FC) allows fast and accurate counting of bacterial cells under simul¬taneous assessment of their physiological state, in particular in combination with different fluorescent dyes. Here we employed FC and fluorescent dyes to monitor the effect that pollutants may exert on Pseudomonas ûuorescens SV3. First we designed an oligotrophic growth test, which enabled us to follow population growth at low densities (104 - 10 7 cells per ml) using 0.1 mM sodium acetate as carbon source. Cells in the oligotrophic milieu were then exposed or not to a variety of common pollutants, such as 2-chlorobiphenyl (2CBP), naphthalene (NAH), 4-chlorophenol (4CP), tetradecane (TD), mercury chloride (HgCl2) or benzene, in different dosages. Exposed culture samples were stained with SYT09 (green fluorescent dye binding nucleic acids, generally staining all cells) in combination with propidium iodide (PI) or ethidium bromide (EB), both dyes being membrane integrity indicators. We ob- served that most of the tested compounds decreased population growth in a dosage- dependent manner. SYT09/PI or SYT09/EB staining then revealed that chemical exposure led to arisal of subpopulations of live and injured or dead cells. By modeling population growth on the total cell numbers in population or only the subpopulation of live cells we inferred that even in stressed populations live cells multiply at rates no different to unexposed controls. The net decrease in population growth would thus be a consequence of more and more cells being not able to multiply at all, rather than all cells multiplying at slower rates. In addition, the proportion of injured cells correlated to the compound dosage. We concluded that the oligotrophic test may be useful to asses toxicity of unknown chemicals on a variety of model bacteria. Mul¬tiple tests can be run in parallel and effects are rapidly measured within a period of 8 hours. Interestingly, in the same exposure tests with P. fluorescens SV3 we observed that some chemicals which did not lead to a reduction of net population growth rates did cause measurable effects on live cells. This was mainly observed in cells within the live subpopulation as an increase of the EB fluorescence signal. We showed that SYT09/EB is a more useful combination of dyes than SYT09/PI because PI fluorescence tend to increase only when cells are effectively dead, but not so much in live cells (less then twofold). In contrast, EB geometric mean fluorescence in live cells increased up to eightfold after exposure to toxic compounds. All compounds even at the lowest concentration caused a measurable increase in EB geometric mean fluorescence especially after 2 h incubation time. This effect was found to be transient for cells exposed to 2CBP and 4CP, but chronic for cells incubated with TD and NAH (ultimately leading to cell death). In order to understand the mechanism underlying the observed effects we used known membrane or energy uncouplers. The pattern of EB signal increase in chemical-exposed populations resembled mostly that of EDTA, although EB fluorescence in EDTA-treated or pasteurized cells was even higher than after exposure to the four test chemicals. We conclude that the ability of cells to efflux EB under equilibrium conditions is an appropriate measure for the potential of a chemical to exert toxicity. Since most bacterial species possess efflux systems for EB that all require cellular energy, our test should be more widely relevant to infer toxicity effects of chemical exposure on the physiological status of the bacterial cell. To better understand the effect of toxicant exposure on efflux defense systems, we studied 2-hydroxybiphenyl toxicity to Pseudomonas azeiaica HBP1. We showed that 2-HBP exerts toxicity even to P. azelaica HBP1, but only at concentrations higher than 0.5 mM. Above this concentration transient loss of membrane polarization and integrity occurred, which we conclude from staining of growing cells with fluorescent dyes. Cells finally recover and resume growth on 2HBP. The high resistance of P. azelaica HBP1 to 2-HBP was found to be the result of an efficient MexABOprM- type efflux pump system counteracting passive influx of this compound into the membrane and cellular interior. Mutants with disrupted mexA, mexB and oprM genes did no longer grow on 2-HBP at concentrations above 100 μΜ, whereas below this concentration we found 2-HBP-concentration dependent decrease of growth rate. The MexAB-OprM system in P. azeiaica HBP1 is indeed an efflux pump for ethidium bromide as well. By introducing gfp reporter fusions responsive to intracellular 2- HBP concentrations into HBP1 wild-type or the mutants we demonstrated that 2HBP enters into the cells in a similar way. In contrast, the reporter system in the wild-type cells does not react to 2-HBP at an outside concentration of 2.4 μΜ, whereas in mutant cells it does. This suggests that wild-type cells pump 2-HBP to the outside very effectively preventing accumulation of 2-HBP. 2HBP metabolism, therefore, is not efficient enough to lower the intracellular concentration and prevent toxicity. We conclude that P. azelaica HBP1 resistance to 2-HBP is mainly due to an efficient efflux system and that 2HBP in high concentrations exerts narcotic effects on the bacterial membrane. In the part of this thesis, we investigated the possibilities of bacteria to degrade pollutants at low concentrations (1 mg per L and below). As test components we used 2-hydroxybiphenyl, antibiotics and a variety of fragrances, many of which are known to be difficult to biodegrade. By using accurate counting of low numbers of bacterial cells we could demonstrate that specific growth on these compounds is possible. We demonstrated the accuracy of FC counting at low cell numbers (down to 103 bacterial cells per ml). Then we tested whether bacterial population growth could be specifically monitored at the expense of low substrate concentrations, us¬ing P. azelaica HBP1. A perfect relationship was found between growth rate, yield and 2-HBP concentrations in the range of 0.1 up to 5 mg per L. Mixing P. azelaica within sludge, however, suggested that growth yields in a mixed community can be much lower than in pure culture, perhaps because of loss of metabolic intermediates. We then isolated new strains from activated sludge using 2-HBP or antibiotics (Nal, AMP, SMX) at low concentrations (0.1-1 mg per L) as sole carbon and energy sub¬strate and PAO microdishes. The purified strains were then examined for growth on their respective substrate, which interestingly, showed that all strains can not with¬stand higher than 1 or 10 mg per L concentrations of target substrate. Thus, bacteria must exist that contribute to compound degradation at low pollutant concentrations but are inhibited at higher concentrations. Finally we tested whether specific biomass growth (in number of cells) at the expense of pollutants can also be detected with communities as starting material. Hereto, we focused on a number of fragrance chemicals and measured community biomass increase by flow cytometry cell counting on two distinct starter communities: (i) diluted Lake Geneva water, and dilute activated sludge from a wastewater treatment plant. We observed that most of the test compounds indeed resulted in significant biomass increase in the starter community compared to a no-carbon added control, but activated sludge and lake Geneva water strongly differed (almost mutually ex¬clusive) in their capacity to degrade the test chemicals. In two cases for activated sludge the same type of microbial community developed upon compound exposure, as concluded from transcription fragment length polymorphism analysis on community purified and PCR amplified 16S rRNA gene fragments. To properly test compound biodegradability it is thus important to use starter communities of different origin. We conclude that FC counting can be a valuable tool to screen chemicals for their biodegradability and toxicity. - Des milliers de produits chimiques sont libérés dans l'environnement mais beaucoup ont des effets inconnus, en particulier à basses concentrations. Ce travail de thèse contribue à notre comprehension des effets de la pollution en utilisant des bacteries comme des organismes-tests. Les bacteries sont importantes pour etudier cette ques¬tion car certaines d'entre elles peuvent degrader ou transformer les polluants, mais également parce qu'elles-mmes peuvent tre inhibees dans leur reproduction après avoit ete exposees à ces composes toxiques. Quand des effets inhibiteurs ont lieu, la composition de la communauté microbienne peut tre changee à long terme, ce qui mène à une reduction du service d'ecosystème offert par ces communautés. En consequence, après leur liberation dans l'environnement, les produits chimiques d'origine anthropogenique peuvent soit s'y accumuler et per¬sister, exerant ainsi des effets encore inconnus sur les organismes vivants. En plus d'acquérir des connaissances de base sur les effets des polluants à basses concentra¬tions sur les communautés microbiennes, un but applique de cette thèse était de développer des tests bases sur les bacteries afin d'identifier de nouveau composes pour leur toxicité ou leur biodégradation. Dans la première partie de ce travail, nous avons developpe un test base sur la cytometrie de flux (FC) sur des cellules de Pseudomonas fluorescens colorees par du bromure d'ethidium ou de l'iodure de propidium et exposees ou non à une palette de polluants sous des conditions de croissance oligotrophique. La cytometrie de flux est une technique qui connaît de nombreuses applications dans la microbiologie environ¬nementale. Cela est principalement du au fait qu'elle permet un comptage rapide et precis ainsi que l'évaluation de l'état physiologique, en particulier lorsqu'elle est combinée h des colorations fluorescentes. Ici, nous avons utilise la technique FC et des colorants fluorescents afin de mesurer l'effet que peuvent exercer certains pollu¬ants sur Pseudomonas ûuorescens SV3 . D'abord nous avons conu des tests oligo- trophiques qui nous permettent de suivre la croissance complète de cellules en culture h des densites faibles (104 -10 7 cellules par ml), sur de l'acetate de sodium à 0.1 mM, en presence ou absence de produits chimiques (2-chlorobiphenyl (2CBP), naphthalène (NAH), 4-chlorophenol (4CP), tetradecane (TD), chlorure de mercure(II) (HgCl2)) à différentes concentrations. Afin de montrer le devenir des bacteries tant au niveau de la cellule individuelle que celui de la population globale, après exposition à des series de composes chimiques, nous avons compte les cellules colorees avec du SYT09 (col¬orant fluorescent vert des acides nucléiques pour la discrimination des cellules par rapport au bruit de fond) en combinaison avec l'iodure de propidium (PI) ou le bromure d'ethidium (EB), indicateurs de l'intégrité de la membrane cellulaire avec FC. Nous avons observe que de nombreux composes testes avaient un effet sur la croissance bacterienne, resultant en une baisse du taux de reproduction de la pop¬ulation. En outre, la double coloration que nous avons utilisee dans cette etude SYT09/PI ou SYT09/EB a montre que les produits chimiques testes induisaient une reponse heterogène des cellules dans la population, divisant celle-ci en sous- populations "saine", "endommagee" ou "morte". Les nombres de cellules à partir du comptage et de la proportion de celles "saines" et "endommagees/mortes" ont ensuite ete utilises pour modeliser la croissance de P. ûuorescens SV3 exposee aux produits chimiques. La reduction nette dans la croissance de population est une consequence du fait que de plus en plus de cellules sont incapables de se reproduire, plutt que du fait d'une croissance plus lente de l'ensemble de la population. De plus, la proportion de cellules endommagees est correllee au dosage du compose chimique. Les résultats obtenus nous ont permis de conclure que le test oligotrophique que nous avons developpe peut tre utilise pour l'évaluation de la toxicité de produits chimiques sur différents modèles bacteriens. Des tests multiples peuvent tre lances en parallèle et les effets sont mesures en l'espace de huit heures. Par ailleurs, nous en déduisons que les produits chimiques exercént un effet sur la croissance des cellules de P. ûuorescens SV3, qui est heterogène parmi les cellules dans la population et depend du produit chimique. Il est intéressant de noter que dans les mmes tests d'exposition avec P. ûuorescens SV3, nous avons observe que certains composes qui n'ont pas conduit à une reduction du taux de la croissance nette de la population, ont cause des effets mesurables sur les cellule saines. Ceci a ete essentiellement observe dans la portion "saine" des cellules en tant qu'augmentation du signal de la fluorescence de 1ΈΒ. D'abord nous avons montre que SYT09/EB était une com¬binaison de colorants plus utile que celle de SYT09/PI parce que la fluorescence du PI a tendance à augmenter uniquement lorsque les cellules sont effectivement mortes, et non pas dans les cellules saines (moins de deux fois plus). Par opposi¬tion, la fluorescence moyenne de l'EB dans les cellules saines augmente jusqu'à huit fois plus après exposition aux composes toxiques. Tous les composes, mme aux plus basses concentrations, induisent une augmentation mesurable de la fluorescence moy¬enne de 1ΈΒ, plus particulièrement après deux heures d'incubation. Cet effet s'est revele tre transitoire pour les cellules exposees aux 2CNP et 4CP, mais est chro¬nique pour les cellules incubees avec le TD et le NAH (entranant la mort cellulaire). Afin de comprendre les mécanismes qui sous-tendent les effets observes, nous avons utilise des decoupleurs d'energie ou de membrane. L'augmentation du signal EB dans les populations causee par des produits chimiques ressemblait à celle exerce par le chelateur des ions divalents EDTA. Cependant, les intensités du signal EB des cellules exposees aux produits chimiques testees n'ont jamais atteint les valeurs des cellules traitees avec l'EDTA ou pasteurises. Nous en concluons que le test oli- gotrophique utilisant la coloration (SYT09/)EB des cellules exposees ou non à un produit chimique est utile afin d'evaluer l'effet toxique exerce par les polluants sur la physiologie bacterienne. Afin de mieux comprendre la reaction d'un système de defense par pompe à efflux après exposition à une toxine, nous avons étudié la toxicité du 2-hydroxybiphenyl (2-HBP) sur Pseudomonas azeiaica HBP1. Nous avons montre que le 2-HBP exerce une toxicité mme sur HBP1, mais uniquement à des concentrations supérieures à 0.5 mM. Au-dessus de cette concentration, des pertes transitoires d'intégrité et de polarization membranaire ont lieu, comme cela nous a ete montre par coloration des cellules en croissance. Les cellules sont finalement capables de se rétablir et de reprendre leur croissance sur 2-HBP. La forte resistance de P. azeiaica HBP1 h 2-HBP physiologie bacterienne s'est revele tre le résultat d'un système de pompe h efflux de type MexABOprM qui contre-balance l'influx passif de ce compose h travers la membrane. Nous avons montre, en construisant des mutants avec des insertions dans les gènes mexA, mexB and oprM et des fusions avec le gène rapporteur gfp, que l'altération de n'importe quelle partie du système d'efflux conduisait à accroître l'accumulation de 2-HBP dans la cellule, en comparaison avec la souche sauvage HBP1, provoquant une diminution de la resistance au 2-HBP ainsi qu'une baisse du taux de reproduction des cellules. Des systèmes d'efflux similaires sont répandus chez de nombreuses espèces bactériennes. Ils seraient responsables de la resistance aux produits chimiques tels que les colorants fluorescents (bromure d'ethidium) et des antibiotiques. Nous concluons que la resistance de P. azelaica HBP1 à 2-HBP est principalement due à un système d'efflux efficace et que 2-HBP, à des concentrations elevees, exerce un effet deletère sur la membrane bacterienne. En se basant sur le comptage des cellules avec la FC, nous avons developpe ensuite une methode pour evaluer la biodegradabilite de polluants tels que le 2-HBP ainsi que les antibiotiques (acide nalidixique (Nal), ampicilline (AMP) ou sulfamethoxazole (SMX)) à de faibles concentrations lmg par L et moins), par le suivi de la croissance spécifique sur le compose de cultures microbiennes pures et mixtes. En utilisant un comptage precis de faibles quantités de cellules nous avons pu demontrer que la croissance spécifique sur ces composes est possible. Nous avons pu illustrer la precision du comptage par cytometrie de flux à faible quantité de cellules (jusqu'à 10 3 cellules par ml). Ensuite, nous avons teste s'il était possible de suivre dynamiquement la croissance de la population de cellules sur faibles concentrations de substrats, en utilisant P. azelaica HBP1. Une relation parfaite a ete trouvee entre le taux de croissance, le rendement et les concentrations de 2-HBP (entre 0.1 et 5 mg par L). En mélangeant HBP1 à de la boue active, nous avons pu montrer que le rendement en communauté mixtes pouvait tre bien inférieur qu'en culture pure. Ceci étant peut tre le résultat d'une perte d'intermédiaires métaboliques. Nous avons ensuite isole de nouvelles souches à partir de la boue active en utilisant le 2-HBP ou des antibiotiques (Nal, AMP, SMX) h basses concentrations (0.1-1 mg par L) comme seules sources de carbone et d'energie. En combinaison avec ceci, nous avons également utilise des microplaques PAO. Les souches purifiees ont ensuite ete examinees pour leurs croissances sur leurs substrats respectifs. De faon intéressante, toutes ces souches ont montre qu'elles ne pouvaient pas survivre à des concentrations de substrats supérieures à 1 ou 10 mg par L. Ainsi, il existe des bacteries qui contribuent à la degradation de composes à basses concentrations de polluant mais sont inhibes lorsque ces concentrations deviennent plus hautes. Finalement, nous avons cherche à savoir s'il est possible de detecter une croissance spécifique à une biomasse au depend d'un polluant, en partant d'une communauté microbienne. Ainsi, nous nous sommes concentre sur certains composes et avons mesure l'augmentation de la biomasse d'une communauté grce à la cytometrie de flux. Nous avons compte deux communautés de depart distinctes: (i) une dilution d'eau du Lac Léman, et une dilution de boue active d'une station d'épuration. Nous avons observe que la plupart des composes testes ont entrane une augmentation de la biomasse de depart par rapport au control sans addition de source de carbone. Néanmoins, les échantillons du lac Léman et de la station d'épuration différaient largement (s'excluant mutuellement l'un l'autre) dans leur capacité à degrader les composes chimiques. Dans deux cas provenant de la station d'épuration, le mme type de communauté microbienne s'est developpe après exposition aux composes, comme l'a démontré l'analyse TRFLP sur les fragments d'ARN 16S purifie de la communauté et amplifie par PCR. Afin de tester correctement la biodegradabilite d'un compose, il est donc important d'utiliser des communautés de depart de différentes origines Nous en concluons que le comptage par cytometrie de flux peut tre un outil de grande utilité pour mettre en valeur la biodegradabillite et la toxicité des composes chimiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Purpose: Gout is a common and excruciatingly painful inflammatory arthritis caused by hyperuricemia. In addition to various lifestyle risk factors, a substantial genetic predisposition to gout has long been recognized. The Global Urate Genetics Consortium (GUGC) has aimed to comprehensively investigate the genetics of serum uric acid and gout using data from _ 140,000 individuals of European-ancestry, 8,340 individuals of Indian ancestry, 5,820 African-Americans, and 15,286 Japanese. Methods: We performed discovery GWAS meta-analyses of serum urate levels (n_110,347 individuals) followed by replication analyses (n_32,813 different individuals). Our gout analysis involved 3,151 cases and 68,350 controls, including 1,036 incident gout cases that met the American College of Rheumatology Criteria. We also examined the association of gout with fractional excretion of uric acid (n_6,799). A weighted genetic urate score was constructed based on the number of risk alleles across urate-associated loci, and their association with the risk of gout was evaluated. Furthermore, we examined implicated transcript expression in cis (expression quantitative trait loci databases) for potential insights into the gene underlying the association signal. Finally, in order to further identify urate-associated genomic regions, we performed functional network analyses that incorporated prior knowledge on molecular interactions in which the gene products of implicated genes operate. Results: We identified and replicated 28 genome-wide significant loci in association with serum urate (P 5_10_8), including all previously-reported loci as well as 18 novel genetic loci. Unlike the majority of previouslyidentified loci, none of the novel loci appeared to be obvious candidates for urate transport. Rather, they were mapped to genes that encode for purine production, transcription, or growth factors with broad downstream responses. Besides SLC2A9 and ABCG2, no additional regions contained SNPs that differed significantly (P _ 5_10_8) between sexes. Urateincreasing alleles were associated with an increased risk of gout for all loci. The urate genetic risk score (ranging from 10 to 45) was significantly associated with an increased odds of prevalent gout (OR per unit increase, 1.11; 95% CI, 1.09-1.14) and incident gout (OR, 1.10; 95% CI, 1.08-1.13). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. Detailed characterization of the loci revealed associations with transcript expression and the fractional excretion of urate. Network analyses implicated the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. Conclusion: The novel genetic candidates identified in this urate/gout consortium study, the largest to date, highlight the importance of metabolic control of urate production and urate excretion. The modulation by signaling processes that influence metabolic pathways such as glycolysis and the pentose phosphate pathway appear to be central mechanisms underpinned by the novel GWAS candidates. These findings may have implications for further research into urate-lowering drugs to treat and prevent gout.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Although there have been many studies on isokinetic shoulder exercises in evaluation and rehabilitation programs, the cardiovascular and metabolic responses of those modes of muscle strength exercises have been poorly investigated. Objective: To analyze cardiovascular and metabolic responses during a standardized test used to study the internal (IR) and external (ER) rotators maximal isokinetic strength. Methods: Four days after an incremental exercise test on cycle ergometer, ten healthy subjects performed an isokinetic shoulder strength evaluation with cardiovascular (Heart rate, HR) and metabolic gas exchange (&Vdot;O_{2}) analysis. The IR and ER isokinetic strength, measured in seated position with 45° of shoulder abduction in scapular plane, was evaluated concentrically at 60, 120 and 240°/s and eccentrically at 60°/s, for both shoulder sides. An endurance test with 30 repetitions at 240°/s was performed at the end of each shoulder side testing. Results: There was a significant increase of mean HR with isokinetic exercise (P< 0.05). Increases of HR was 42-71% over the resting values. During endurance testing, increases of HR was 77-105% over the resting values, and corresponded to 85-86% of the maximal HR during incremental test. Increase of &Vdot;O_{2} during isokinetic exercises was from 6-11 ml/min/kg to 20-43 ml/min/kg. Conclusion: This study performed significant cardiovascular and metabolic responses to isokinetic exercise of rotators shoulder muscles. A warm-up should be performed before maximal high-intensity isokinetic shoulder testing. Our results indicated that observation and supervision are important during testing and/or training sessions, especially in subjects with risk for cardiovascular disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clozapine (CLO), an atypical antipsychotic, depends mainly on cytochrome P450 1A2 (CYP1A2) for its metabolic clearance. Four patients treated with CLO, who were smokers, were nonresponders and had low plasma levels while receiving usual doses. Their plasma levels to dose ratios of CLO (median; range, 0.34; 0.22 to 0.40 ng x day/mL x mg) were significantly lower than ratios calculated from another study with 29 patients (0.75; 0.22 to 2.83 ng x day/mL x mg; P < 0.01). These patients were confirmed as being CYP1A2 ultrarapid metabolizers by the caffeine phenotyping test (median systemic caffeine plasma clearance; range, 3.85; 3.33 to 4.17 mL/min/kg) when compared with previous studies (0.3 to 3.33 mL/min/kg). The sequencing of the entire CYP1A2 gene from genomic DNA of these patients suggests that the -164C > A mutation (CYP1A2*1F) in intron 1, which confers a high inducibility of CYP1A2 in smokers, is the most likely explanation for their ultrarapid CYP1A2 activity. A marked (2 patients) or a moderate (2 patients) improvement of the clinical state of the patients occurred after the increase of CLO blood levels above the therapeutic threshold by the increase of CLO doses to very high values (ie, up to 1400 mg/d) or by the introduction of fluvoxamine, a potent CYP1A2 inhibitor, at low dosage (50 to 100 mg/d). Due to the high frequency of smokers among patients with schizophrenia and to the high frequency of the -164C > A polymorphism, CYP1A2 genotyping could have important clinical implications for the treatment of patients with CLO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 54-year-old patient who had an isolated small polar thalamic infarct and acute global amnesia with slight frontal type dysfunction but without other neurological dysfunction was studied. Memory improved partially within 8 months. At all stages the impairment was more severe for verbal than non-verbal memory. Autobiographic recollections and newly acquired information tended to be disorganised with respect to temporal order. Procedural memory was unaffected. Both emotional involvement and pleasure in reading were lost. On MRI, the infarct was limited to the left anterior thalamic nuclei and the adjacent mamillothalamic tract. The regional cerebral metabolic rate of glucose (measured with PET) was decreased on the left in the thalamus, amygdala, and posterior cingulate cortex 2 weeks after the infarct, and in the thalamus and posterior cingulate cortex 9 months later. These findings stress the specific role of the left anterior thalamic region in memory and confirm that longlasting amnesia from a thalamic lesion can occur without significant structural damage to the dorsomedial nucleus. Furthermore, they suggest that the anterior thalamic nuclei and possibly their connections with the posterior cingulate cortex play a role in emotional involvement linked to ipsilateral hemispheric functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The respiratory behavior during affective states is not completely understood. We studied breathing pattern responses to picture series in 37 participants. We also measured end-tidal pCO2 (EtCO2) to determine if ventilation is in balance with metabolic demands and spontaneous eye-blinking to investigate the link between respiration and attention. Minute ventilation (MV) and inspiratory drive increased with self-rated arousal. These relationships reflected increases in inspiratory volume rather than shortening of the time parameters. EtCO2 covaried with pleasantness but not arousal. Eye-blink rate decreased with increasing unpleasantness in line with a negativity bias in attention. This study confirms that respiratory responses to affective stimuli are organized to a certain degree along the dimensions of valence and arousal. It shows, for the first time, that during picture viewing, ventilatory increases with increasing arousal are in balance with metabolic activity and that inspiratory volume is modulated by arousal. MV emerges as the most reliable respiratory index of self-perceived arousal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Aquaglyceroporin-9 (AQP9) is a member of the Aquaporin channel family involved in water flux through plasma membranes and exhibits the distinctive feature of also being permeable to glycerol and monocarboxylates. AQP9 is detected in astrocytes and catecholaminergic neurons.1 However, the presence of AQP9 in the brain is now debated after a recent publication claiming that AQP9 is not expressed in the brain.2 Based on our results,3 we have evidence of the presence of AQP9 in the brain and we further hypothesize that AQP9 plays a functional role in brain energy metabolism. Methods: The presence of AQP9 in brain of OF1 mice was studied by RT-PCR and immunohistochemistry. To address the role of AQP9 in brain, we used commercial siRNA against AQP9 to knockdown its expression in 2 cultures of astrocytes from two distinct sources (from differentiated stem cells4 and primary astrocyte cultures). After assessment of the decrease of AQP9, glycerol uptake was measured using [H3]-glycerol. Then, modifications of the astrocytic energy metabolism was evaluated by measurement of glucose consumption, lactate release5 and evaluation of the mitochondrial activity by MTT staining. Results: AQP9 is expressed in astrocytes of OF1 mouse brain (mRNA and protein levels). We also showed that AQP9 mRNA and protein are present in cultured astrocytes. Four days after AQP9 siRNA application, the level of expression is significantly decreased by 76% compared to control. Astrocytes with AQP9 knockdown exhibit a 23% decrease of glycerol uptake, showing that AQP9 is a glycerol channel in cultured astrocytes. In parallel, astrocytes with AQP9 knockdown have a 155% increase of their glucose consumption without modifications of lactate release. Moreover, considering the observed glucose consumption increase and the absence of proliferation induction, the significant MTT activity increase (113%) suggests an increase of oxidative metabolism in astrocytes with AQP9 knockdown. Discussion: The involvement of AQP9 in astrocyte energy metabolism adds a new function for this channel in the brain. The determination of the role of AQP9 in astrocytes provides a new perspective on the controversial expression of AQP9 in brain. We also suggest that AQP9 may have a complementary role to monocarboxylate transporters in the regulation of brain energy metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.