53 resultados para Mechanical compression testing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study is to create a standard test to approve the efficacy of a surgical sealant. An industrial test, the bulge-and-blister test, which is very convenient for measuring adhesion energy, is applied to the surgical field to quantify adhesion of bioadhesives. METHODS: Samples were composed of two circular layers of equine pericardium glued by the surgical sealant studied. The sample was fixed to a support with an industrial glue. The support and the bottom layer were perforated in the centre to allow injection of pressurised water. Water was progressively introduced through the hole in the support and the bottom layer to create a blister with constant radius, increasing height and internal pressure during this first step. At a critical pressure, delamination started, the radius and height of the blister increased and the pressure decreased. At this point, the adhesion energy could be determined. The experimental parameters were measured with a pressure sensor and an optical profilometry device for deflection. RESULTS: Adhesion testing was carried out in eight paired equine pericardium samples bonded with a Dermabond cyanoacrylate glue. The average value of the practical adhesion energy is 2.3 Jm(-2) with a standard deviation of 1.5 Jm(-2). CONCLUSION: Application of the bulge-and-blister test to the surgical field was achieved and allowed a quantification of adhesion of a surgical glue. Such information is essential to compare the different surgical glues presently available. The study of the impact of bonding conditions such as pressure, hygrometry or setting conditions will provide a better understanding of the characteristics of adhesion in the surgical field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of DNA-based markers toward the task of discriminating among alternate salmon runs has evolved in accordance with ongoing genomic developments and increasingly has enabled resolution of which genetic markers associate with important life-history differences. Accurate and efficient identification of the most likely origin for salmon encountered during ocean fisheries, or at salvage from fresh water diversion and monitoring facilities, has far-reaching consequences for improving measures for management, restoration and conservation. Near-real-time provision of high-resolution identity information enables prompt response to changes in encounter rates. We thus continue to develop new tools to provide the greatest statistical power for run identification. As a proof of concept for genetic identification improvements, we conducted simulation and blind tests for 623 known-origin Chinook salmon (Oncorhynchus tshawytscha) to compare and contrast the accuracy of different population sampling baselines and microsatellite loci panels. This test included 35 microsatellite loci (1266 alleles), some known to be associated with specific coding regions of functional significance, such as the circadian rhythm cryptochrome genes, and others not known to be associated with any functional importance. The identification of fall run with unprecedented accuracy was demonstrated. Overall, the top performing panel and baseline (HMSC21) were predicted to have a success rate of 98%, but the blind-test success rate was 84%. Findings for bias or non-bias are discussed to target primary areas for further research and resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Aspergillus species are the main pathogens causing invasive fungal infections but the prevalence of other mould species is rising. Resistance to antifungals among these new emerging pathogens presents a challenge for managing of infections. Conventional susceptibility testing of non-Aspergillus species is laborious and often difficult to interpret. We evaluated a new method for real-time susceptibility testing of moulds based on their of growth-related heat production.Methods: Laboratory and clinical strains of Mucor spp. (n = 4), Scedoporium spp. (n = 4) and Fusarium spp. (n = 5) were used. Conventional MIC was determined by microbroth dilution. Isothermal microcalorimetry was performed at 37 C using Sabouraud dextrose broth (SDB) inoculated with 104 spores/ml (determined by microscopical enumeration). SDB without antifungals was used for evaluation of growth characteristics. Detection time was defined as heat flow exceeding 10 lW. For susceptibility testing serial dilutions of amphotericin B, voriconazole, posaconazole and caspofungin were used. The minimal heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration, inhbiting 50% of the heat produced by the growth control at 48 h or at 24 h for Mucor spp. Susceptibility tests were performed in duplicate.Results: Tested mould genera had distinctive heat flow profiles with a median detection time (range) of 3.4 h (1.9-4.1 h) for Mucor spp, 11.0 h (7.1-13.7 h) for Fusarium spp and 29.3 h (27.4-33.0 h) for Scedosporium spp. Graph shows heat flow (in duplicate) of one representative strain from each genus (dashed line marks detection limit). Species belonging to the same genus showed similar heat production profiles. Table shows MHIC and MIC ranges for tested moulds and antifungals.Conclusions: Microcalorimetry allowed rapid detection of growth of slow-growing species, such as Fusarium spp. and Scedosporium spp. Moreover, microcalorimetry offers a new approach for antifungal susceptibility testing of moulds, correlating with conventional MIC values. Interpretation of calorimetric susceptibility data is easy and real-time data on the effect of different antifungals on the growth of the moulds is additionally obtained. This method may be used for investigation of different mechanisms of action of antifungals, new substances and drug-drug combinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic growth hormone (GH) hypersecretion in rats leads to increased isometric force without affecting the unloaded shortening velocity of isolated cardiac papillary muscles, despite a marked isomyosin shift toward V3. To determine if alterations occurred at the level of the contractile proteins in rats bearing a GH-secreting tumor (GH rats), we examined the mechanical properties of skinned fibers to eliminate the early steps of the excitation-contraction coupling mechanism. We found that maximal active tension and stiffness at saturating calcium concentrations (pCa 4.5) were markedly higher in GH rats than in control rats (tension, 52.9 +/- 5.2 versus 38.1 +/- 4.6 mN.mm-2, p < 0.05; stiffness, 1,105 +/- 120 versus 685 +/- 88 mN.mm-2.microns-1, p < 0.01), whereas values at low calcium concentrations (pCa 9) were unchanged. In addition, the calcium sensitivity of the contractile proteins was slightly but significantly higher in GH rats than in control rats (delta pCa 0.04, p < 0.001). The crossbridge cycling rate, reflected by the response to quick length changes, was lower in GH rats than in control rats (62.0 +/- 2.6 versus 77.4 +/- 6.6 sec-1, p < 0.05), in good agreement with a decrease in the proportion of alpha-myosin heavy chains in the corresponding papillary muscles (45.5 +/- 2.0% versus 94.6 +/- 2.4%, p < 0.001). The changes in myosin heavy chain protein phenotype were paralleled by similar changes of the corresponding mRNAs, indicating that the latter occurred mainly at a pretranslational level. These results demonstrate that during chronic GH hypersecretion in rats, alterations at the myofibrillar level contribute to the increase in myocardial contractility observed in intact muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanically ventilated patients in hospitals are subjected to an increased risk of acquiring nosocomial pneumonia that sometimes has a lethal outcome. One way to minimize the risk could be to make the surfaces on endotracheal tubes antibacterial. In this study, bacterial growth was inhibited or completely prevented by silver ions wet chemically and deposited onto the tube surface. Through the wet chemical treatment developed here, a surface precipitate was formed containing silver chloride and a silver stearate salt. The identity and morphology of the surface precipitate was studied using x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray powder diffraction. Leaching of silver ions into solution was examined, and bacterial growth on the treated surfaces was assayed using Pseudomonas aeruginosa wild type (PAO1) bacteria. Furthermore, the minimum inhibitory concentration of silver ions was determined in liquid- and solid-rich growth medium as 23 and 18 microM, respectively, for P. aeruginosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.