152 resultados para MICROBIAL DIVERSITY
Resumo:
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.
Resumo:
Recent population genetic studies suggest that staphylococcal cassette chromosome mec (SCCmec) was acquired much more frequently than previously thought. In the present study, we aimed to investigate the diversity of SCCmec elements in a local methicillin-resistant Staphylococcus aureus (MRSA) population. Each MRSA isolate (one per patient) recovered in the Vaud canton of Switzerland from January 2005 to December 2008 was analyzed by the double-locus sequence typing (DLST) method and SCCmec typing. DLST analysis indicated that 1,884/2,036 isolates (92.5%) belong to four predominant clones. As expected from the local spread of a clone, most isolates within clones harbored an identical SCCmec type. However, three to seven SCCmec types have been recovered in every predominant DLST clone, suggesting that some of these elements might have been acquired locally. This pattern could also be explained by distinct importations of related isolates into the study region. The addition of a third highly variable locus to further increase the discriminatory power of typing as well as epidemiological data suggested that most ambiguous situations were explained by the second hypothesis. In conclusion, our study showed that even if the acquisition of new SCCmec elements at a local level likely occurs, it does not explain all the diversity observed in the study region.
Resumo:
1. As trees in a given cohort progress through ontogeny, many individuals die. This risk of mortality is unevenly distributed across species because of many processes such as habitat filtering, interspecific competition and negative density dependence. Here, we predict and test the patterns that such ecological processes should inscribe on both species and phylogenetic diversity as plants recruit from saplings to the canopy. 2. We compared species and phylogenetic diversity of sapling and tree communities at two sites in French Guiana. We surveyed 2084 adult trees in four 1-ha tree plots and 943 saplings in sixteen 16-m2 subplots nested within the tree plots. Species diversity was measured using Fisher's alpha (species richness) and Simpson's index (species evenness). Phylogenetic diversity was measured using Faith's phylogenetic diversity (phylogenetic richness) and Rao's quadratic entropy index (phylogenetic evenness). The phylogenetic diversity indices were inferred using four phylogenetic hypotheses: two based on rbcLa plastid DNA sequences obtained from the inventoried individuals with different branch lengths, a global phylogeny available from the Angiosperm Phylogeny Group, and a combination of both. 3. Taxonomic identification of the saplings was performed by combining morphological and DNA barcoding techniques using three plant DNA barcodes (psbA-trnH, rpoC1 and rbcLa). DNA barcoding enabled us to increase species assignment and to assign unidentified saplings to molecular operational taxonomic units. 4. Species richness was similar between saplings and trees, but in about half of our comparisons, species evenness was higher in trees than in saplings. This suggests that negative density dependence plays an important role during the sapling-to-tree transition. 5. Phylogenetic richness increased between saplings and trees in about half of the comparisons. Phylogenetic evenness increased significantly between saplings and trees in a few cases (4 out of 16) and only with the most resolved phylogeny. These results suggest that negative density dependence operates largely independently of the phylogenetic structure of communities. 6. Synthesis. By contrasting species richness and evenness across size classes, we suggest that negative density dependence drives shifts in composition during the sapling-to-tree transition. In addition, we found little evidence for a change in phylogenetic diversity across age classes, suggesting that the observed patterns are not phylogenetically constrained.
Resumo:
The examination of radiolarian biodiversity at the family level through Phanerozoic time reveals some general trends known in other groups of organisms, especially among plankton, while some other trends seem to be quite peculiar. The Permian/Triassic crisis that is one of the most important in the evolution of marine organisms, is marked in radiolarian assemblages by the extinction of two orders (Albaillellaria and Latentifistularia) towards the end of the Permian, and mostly by the tremendous diversification of Spumellaria and Nassellaria in the early-mid Triassic. Radiolarian diversity increased from Cambrian to Jurassic, remained quite stable during the Cretaceous and has decreased slightly since then.
Resumo:
The richness of the parasitic community associated with social insect colonies has rarely been investigated. Moreover, understanding how hosts and pathogens interact in nature is important to interpret results from laboratory experiments. Here, we assessed the diversity, prevalence and virulence of fungal entomopathogens present around and within colonies of the ant Formica selysi. We detected eight fungal species known to be entomopathogenic in soil sampled from the habitat of ants. Six of these entomopathogens were found in active nests, abandoned nests, and corpses from dump piles or live ants. A systematic search for the presence of three generalist fungal entomopathogens in ant colonies revealed a large variation in their prevalence. The most common of the three pathogens, Paecilomyces lilacinus, was detected in 44% of the colonies. Beauveria bassiana occurred in 17% of the colonies, often in association with P. lilacinus, whereas we did not detect Metarhizium brunneum (formerly M. anisopliae) in active colonies. The three fungal species caused significant mortality to experimentally challenged ants, but varied in their degree of virulence. There was a high level of genetic diversity within B. bassiana isolates, which delineated three genetic strains that also differed significantly in their virulence. Overall, our study indicates that the ants encounter a diversity of fungal entomopathogens in their natural habitat. Moreover, some generalist pathogens vary greatly in their virulence and prevalence in ant colonies, which calls for further studies on the specificity of the interactions between the ant hosts and their fungal pathogens.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ecologically important root symbionts of most terrestrial plants. Ecological studies of AMF have concentrated on differences between species; largely assuming little variability within AMF species. Although AMF are clonal, they have evolved to contain a surprisingly high within-species genetic variability, and genetically different nuclei can coexist within individual spores. These traits could potentially lead to within-population genetic variation, causing differences in physiology and symbiotic function in AMF populations, a consequence that has been largely neglected. We found highly significant genetic and phenotypic variation among isolates of a population of Glomus intraradices but relatively low total observed genetic diversity. Because we maintained the isolated population in a constant environment, phenotypic variation can be considered as variation in quantitative genetic traits. In view of the large genetic differences among isolates by randomly sampling two individual spores, <50% of the total observed population genetic diversity is represented. Adding an isolate from a distant population did not increase total observed genetic diversity. Genetic variation exceeded variation in quantitative genetic traits, indicating that selection acted on the population to retain similar traits, which might be because of the multigenomic nature of AMF, where considerable genetic redundancy could buffer the effects of changes in the genetic content of phenotypic traits. These results have direct implications for ecological research and for studying AMF genes, improving commercial AMF inoculum, and understanding evolutionary mechanisms in multigenomic organisms.
Resumo:
Host-pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host-pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.
Resumo:
Fungal symbionts commonly occur in plants influencing host growth, physiology, and ecology (Carlile et al., 2001). However, while whole-plant growth responses to biotrophic fungi are readily demonstrated, it has been much more difficult to identify and detect the physiological mechanisms responsible. Previous work on the clonal grass Glyceria striata has revealed that the systemic fungal endophyte Epichloë glyceriae has a positive effect on clonal growth of its host (Pan & Clay, 2002; 2003). The latest study from these authors, in this issue (pp. 467- 475), now suggests that increased carbon movement in hosts infected by E. glyceriae may function as one mechanism by which endophytic fungi could increase plant growth. Given the widespread distribution of both clonal plants and symbiotic fungi, this research will have implications for our understanding of the ecology and evolution of fungus-plant associations in natural communities.
Resumo:
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.
Resumo:
RESUME : De nombreuses espèces animales vivent en groupe. Du simple grégarisme aux colonies hautement intégrées de fourmis, la vie sociale a atteint des degrés divers de complexité. Les nombreuses interactions entre membres d'une société favorisent la transmission de parasites. Cela représente un coût potentiel de la vie sociale. Cette thèse s'intéresse aux défenses permettant de réduire le coût du parasitisme dans les colonies de fourmis ainsi qu'à la manière dont le parasitisme a pu façonner certains aspects de ces sociétés. Les colonies de fourmis des bois (Forimica paralugubris) contiennent de grandes quantités de résine de conifères. Cette résine réduit la densité microbienne dans le nid et augmente la survie des ouvrières lors d'infections parasitaires. Dans cette thèse, nous montrons, d'une part, que les ouvrières collectent activement la résine et que ce comportement est plutôt préventif que curatif et, d'autre part, que la résine permet aux ouvrières une utilisation moindre de leurs défenses immunitaires. Ces résultats permettent de conclure que ce comportement réduit l'exposition au parasitisme et qu'il a une fonction adaptative. L'émergence d'un tel comportement de médication chez une espèce d'insectes sociaux illustre le fait que la socialité, bien yue provoquant une exposition accrue au parasitisme, permet également l'émergence de mécanismes sociaux de défense. II a été suggéré que la présence de plusieurs reines au sein d'un même nid (polygynie) améliore la résistance aux parasites en augmentant la diversité génétique au sein de la colonie. En accord avec cette hypothèse, nous montrons qu'une augmentation de la diversité génétique au sein de groupes expérimentaux de Formica selysi améliore leur survie lors d'une infection parasitaire. Cependant, nous suggérons également que sur le terrain, d'autres facteurs corrélés à la polygynie ont des effets antagoniques sur la résistance. Nous montrons par exemple que les ouvrières polygynes semblent avoir une capacité moindre à monter une réponse immunitaire. Certains aspects de la reproduction des fourmis ont pu également être façonnés par le parasitisme. L'accouplement n'a lieu que lors d'une courte période au début de la vie adulte, généralement à l'extérieur de la colonie. Les reines stockent ensuite le sperme et l'utilisent parcimonieusement au cours de leur vie alors que les males meurent rapidement. Nous montrons que les défenses immunitaires des reines de fourmis des bois (F. paralugubris) sont fortement affectées par l'accouplement. Ces modulations immunitaires sont probablement liées à une augmentation de l'exposition au parasitisme lors de l'accouplement ainsi qu'à des blessures copulatoires. I1 semble donc que l'accouplement soit accompagné de coûts immunitaires pour les reines. Dans son ensemble, cette thèse illustre la diversité des mécanismes de défenses contre les parasites dans les sociétés de fourmis. La vie sociale, en offrant un nouveau niveau d'interaction, permet en effet l'émergence d'adaptations originales. Cela explique probablement le grand succès écologique des espèces sociales. SUMMARY : Sociality is widespread among animals and has reached variable degrees of complexity, from loose social Groups to highly integrated ant colonies. The many interactions between members of a social group promote the spread of parasites, but social life also permits the evolution of original defence mechanisms. This thesis sheds light on how ant colonies defend themselves against parasites, and on how parasitism shapes certain aspects of these societies. Wood ants nests (Formica paralugubris) contain large amounts of conifer resin which reduces the microbial density in ant nests and enhances the survival of ants challenged by some pathogens. We show that resin is actively collected by workers and that resin collection is rather a prophylactic than a curative behaviour. Moreover, we suggest that resin reduces the use of the immune defences of workers. Altogether, these results indicate that the use of resin is a collective adaptation to prevent the spread of parasites. The emergence of medication in a social insect species illustrates that sociality does not only increase the exposure to parasites but also allows the emergence of social mechanisms to counter this threat. The number of reproducing queens per colony is a variable trait in ants. It has been suggested that polygyny (the occurrence of multiple queens within a colony), by increasing the colonial genetic diversity, improves disease resistance. In line with this hypothesis, we show that in a socially polymorphic ant (Formica selysi), an experimental increase of colony genetic diversity enhances disease resistance. However, we also suggest that factors covarying with queen number variation in the field have antagonistic effects on parasite resistance. We show for instance that polygyne workers seem to have lower immune defences. Parasites may also shape some aspects of ant queen reproductive biology. Ant queens mate at the beginning of their adult life, usually outside of the colony, and store sperm for several years to fertilize eggs. Males die shortly after mating and queens never remate later in life, which drastically reduces sexual conflicts. Moreover, mating and nest founding occur away from the collective defence mechanisms of the natal colony and might be associated with an increased risk of parasitism. We show that mating affects the immune defences of wood ant queens (F. paralugubris) in multiple ways that are consistent with mating wounds and increased risk of parasitism. We suggest that mating is associated with immunity costs in ants, despite the reduced level of sexual conflicts. Altogether, my thesis illustrates the diversity of anti-parasite mechanisms in ant societies. This sheds light on how sociality, by offering a new level of interactions, allows the evolution of original adaptations, which may explain the wide ecological success of social species.
Resumo:
Phenotypic and genetic characterization of 62 Staphylococcus aureus isolates recovered in Nigeria indicated a high proportion of Panton-Valentine leukocidin-positive isolates and a high genetic diversity among the 22 methicillin-resistant S. aureus. This underlines the need for infection control in Africa to prevent further dissemination of potentially highly virulent and resistant clones.
Resumo:
The molecular diversity of viruses complicates the interpretation of viral genomic and proteomic data. To make sense of viral gene functions, investigators must be familiar with the virus host range, replication cycle and virion structure. Our aim is to provide a comprehensive resource bridging together textbook knowledge with genomic and proteomic sequences. ViralZone web resource (www.expasy.org/viralzone/) provides fact sheets on all known virus families/genera with easy access to sequence data. A selection of reference strains (RefStrain) provides annotated standards to circumvent the exponential increase of virus sequences. Moreover ViralZone offers a complete set of detailed and accurate virion pictures.