279 resultados para MAGNETIC-RESONANCE-SPECTROSCOPY
Resumo:
Elderly individuals display a rapid age-related increase in intraindividual variability (IIV) of their performances. This phenomenon could reflect subtle changes in frontal lobe integrity. However, structural studies in this field are still missing. To address this issue, we computed an IIV index for a simple reaction time (RT) task and performed magnetic resonance imaging (MRI) including voxel based morphometry (VBM) and the tract based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) in 61 adults aged from 22 to 88 years. The age-related IIV increase was associated with decreased fractional anisotropy (FA) as well as increased radial (RD) and mean (MD) diffusion in the main white matter (WM) fiber tracts. In contrast, axial diffusion (AD) and grey matter (GM) densities did not show any significant correlation with IIV. In multivariate models, only FA has an age-independent effect on IIV. These results revealed that WM but not GM changes partly mediated the age-related increase of IIV. They also revealed that the association between WM and IIV could not be only attributed to the damage of frontal lobe circuits but concerned the majority of interhemispheric and intrahemispheric corticocortical connections.
Resumo:
Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.
Resumo:
As future treatments increasingly target the protein chemistry underlying the different dementias, itbecomes crucially important to distinguish between the dementias during life. Neither specific proteinnor genetic markers are as yet available in clinical practice. However, neuroimaging is an obviouscandidate technique that may yield enhanced diagnostic accuracy when applied to thedementias. The physiopathology and anatomopathology is complex in dementia with Lewy bodies(DLB). Besides the relative sparing of medial temporal lobe structures in DLB in comparison toAlzheimer's disease, no clear signature pattern of cerebral atrophy associated with DLB has beenestablished so far. Among others, one reason may be the difficulty in visualizing the small brainnuclei that are differentially involved among the dementias. While we think that structural magneticresonance imaging neuroimaging should be part of the diagnostic workup of most dementia syndromesdue to its usefulness in the differential diagnosis, its contribution to a positive diagnosis ofDLB is as yet limited. The development of different neuroimaging techniques may help distinguishreliably DLB from other neurodegenerative disorders. However, in order to become accepted as partof standard care, these techniques must still prove their effectiveness under routine conditions suchas those encountered by the general practitioner.
Resumo:
RATIONALE AND OBJECTIVES: To determine optimum spatial resolution when imaging peripheral arteries with magnetic resonance angiography (MRA). MATERIALS AND METHODS: Eight vessel diameters ranging from 1.0 to 8.0 mm were simulated in a vascular phantom. A total of 40 three-dimensional flash MRA sequences were acquired with incremental variations of fields of view, matrix size, and slice thickness. The accurately known eight diameters were combined pairwise to generate 22 "exact" degrees of stenosis ranging from 42% to 87%. Then, the diameters were measured in the MRA images by three independent observers and with quantitative angiography (QA) software and used to compute the degrees of stenosis corresponding to the 22 "exact" ones. The accuracy and reproducibility of vessel diameter measurements and stenosis calculations were assessed for vessel size ranging from 6 to 8 mm (iliac artery), 4 to 5 mm (femoro-popliteal arteries), and 1 to 3 mm (infrapopliteal arteries). Maximum pixel dimension and slice thickness to obtain a mean error in stenosis evaluation of less than 10% were determined by linear regression analysis. RESULTS: Mean errors on stenosis quantification were 8.8% +/- 6.3% for 6- to 8-mm vessels, 15.5% +/- 8.2% for 4- to 5-mm vessels, and 18.9% +/- 7.5% for 1- to 3-mm vessels. Mean errors on stenosis calculation were 12.3% +/- 8.2% for observers and 11.4% +/- 15.1% for QA software (P = .0342). To evaluate stenosis with a mean error of less than 10%, maximum pixel surface, the pixel size in the phase direction, and the slice thickness should be less than 1.56 mm2, 1.34 mm, 1.70 mm, respectively (voxel size 2.65 mm3) for 6- to 8-mm vessels; 1.31 mm2, 1.10 mm, 1.34 mm (voxel size 1.76 mm3), for 4- to 5-mm vessels; and 1.17 mm2, 0.90 mm, 0.9 mm (voxel size 1.05 mm3) for 1- to 3-mm vessels. CONCLUSION: Higher spatial resolution than currently used should be selected for imaging peripheral vessels.
Resumo:
RATIONALE AND OBJECTIVES: Recent developments of MR imaging equipment enabled high-quality steady state-free-precession (Balanced FFE, True-FISP) MR-imaging with a substantial 'T2 like' contrast, resulting in a high signal intensity of the blood-pool without the application of exogenous contrast agents. It is hypothesized that Balanced-FFE may be valuable for contrast enhancement in 3D free-breathing coronary MRA. MATERIALS AND METHODS: Navigator-gated free-breathing cardiac triggered coronary MRA was performed in 10 healthy adult subjects and three patients with radiograph defined coronary artery disease using a segmented k-space 3D Balanced FFE imaging sequence. RESULTS: High contrast-to-noise ratio between the blood-pool and the myocardium (29 +/- 8) and long segment visualization of both coronary arteries could be obtained in about 5 minutes during free breathing using the present navigator-gated Balanced-FFE coronary MRA approach. First patient results demonstrated successful display of coronary artery stenoses. CONCLUSION: Balanced FFE offers a potential alternative for endogenous contrast enhancement in navigator-gated free-breathing 3D coronary MRA. The obtained results together with the relatively short scanning time warrant further studies in larger patient collectives.
Resumo:
PURPOSE: To investigate the feasibility of high-resolution selective three-dimensional (3D) magnetic resonance coronary angiography (MRCA) in the evaluation of coronary artery stenoses. MATERIALS AND METHODS: In 12 patients with coronary artery stenoses, MRCA of the coronary artery groups, including the coronary segments with stenoses of 50% or greater based on conventional x-ray coronary angiography (CAG), was performed with double-oblique imaging planes by orienting the 3D slab along the major axis of each right coronary artery-left circumflex artery (RCA-LCX) group and each left main trunk-left anterior descending artery (LMT-LAD) group. Ten RCA-LCX and five LMT-LAD MR angiograms were obtained, and the results were compared with those of conventional x-ray angiography. RESULTS: Among 70 coronary artery segments expected to be covered, a total of 49 (70%) segments were fully demonstrated in diagnostic quality. The identification of segmental location of stenoses showed as high an accuracy as 96%. The retrospective analysis for stenosis of 50% or greater yielded the sensitivity, specificity, and accuracy of 80%, 85%, and 84%, respectively. CONCLUSION: Selective 3D MRCA has the potential for segment-by-segment evaluation of major portions of the right and left coronary arteries with high accuracy.
Resumo:
High-dose dobutamine magnetic resonance stress testing has been shown to be superior to dobutamine stress echocardiography for diagnosis of coronary artery disease (CAD). We determined the feasibility of quantitative myocardial tagging during low- and high-dose dobutamine stress and tested the ability of global systolic and diastolic quantitative parameters to identify patients with significant CAD. Twenty-five patients suspected of having significant CAD were examined with a standard high-dose dobutamine/atropine stress magnetic resonance protocol (1.5-T scanner, Philips). All patients underwent invasive coronary angiography as the standard of reference for the presence (n = 13) or absence (n = 12) of significant CAD. During low-dose dobutamine stress, systolic (circumferential shortening, systolic rotation, and systolic rotation velocity) and diastolic (velocity of circumferential lengthening and diastolic rotation velocity) parameters changed significantly in patients without CAD (all P < 0.05 vs. rest) but not in patients with CAD. Identification of patients without and with CAD during low-dose stress was possible using the diastolic parameter of "time to peak untwist." At high-dose stress, none of the global systolic or diastolic parameters showed the potential to identify the presence of significant CAD. With myocardial tagging, a quantitative analysis of systolic and diastolic function was feasible during low- and high-dose dobutamine stress. In our study, the diastolic parameter of time to peak untwist as assessed during low-dose dobutamine stress was the most promising global parameter for identification of patients with significant CAD. Thus quantitative myocardial tagging may become a tool that reduces the need for high-dose dobutamine stress.
Resumo:
Electromagnetic fields arising from magnetic resonance imaging (MRI) can cause various clinically relevant functional disturbances in patients with cardiac pacemakers. Consequently, an implanted pacemaker is generally considered a contraindication for an MRI scan. With approximately 60 million MRI scans performed worldwide per year, MRI may be indicated for an estimated majority of pacemaker patients during the lifetime of their pacemakers. The availability of MR conditional pacemakers with CE labelling is of particular advantage since they allow the safe use of pacemakers in MRI. In this article the current state of knowledge on pacemakers and MR imaging is discussed. We present the results of a survey conducted among Swiss radiologists to assess current practice in patients with pacemakers.
Resumo:
Rupture of a congenital aneurysm of the sinus of Valsalva is a rare congenital cardiac malformation. This case report describes a congenital aneurysm of the sinus of Valsalva which ruptured into the right ventricle in a 3-year-old girl. The exact route of the fistula through the cardiac walls and the localization of the rupture into the right ventricle was not completely defined by two-dimensional and color Doppler echocardiography and could be determined only by magnetic resonance imaging (MRI).
Resumo:
PURPOSE: The purposes of this study were to (1) develop a high-resolution 3-T magnetic resonance angiography (MRA) technique with an in-plane resolution approximate to that of multidetector coronary computed tomography (MDCT) and a voxel size of 0.35 × 0.35 × 1.5 mm³ and to (2) investigate the image quality of this technique in healthy participants and preliminarily in patients with known coronary artery disease (CAD). MATERIALS AND METHODS: A 3-T coronary MRA technique optimized for an image acquisition voxel as small as 0.35 × 0.35 × 1.5 mm³ (high-resolution coronary MRA [HRC]) was implemented and the coronary arteries of 22 participants were imaged. These included 11 healthy participants (average age, 28.5 years; 5 men) and 11 participants with CAD (average age, 52.9 years; 5 women) as identified on MDCT. In addition, the 11 healthy participants were imaged using a method with a more common spatial resolution of 0.7 × 1 × 3 mm³ (regular-resolution coronary MRA [RRC]). Qualitative and quantitative comparisons were made between the 2 MRA techniques. RESULTS: Normal vessels and CAD lesions were successfully depicted at 350 × 350 μm² in-plane resolution with adequate signal-to-noise ratio (SNR) and contrast-to-noise ratio. The CAD findings were consistent among MDCT and HRC. The HRC showed a 47% improvement in sharpness despite a reduction in SNR (by 72%) and in contrast-to-noise ratio (by 86%) compared with the regular-resolution coronary MRA. CONCLUSION: This study, as a first step toward substantial improvement in the resolution of coronary MRA, demonstrates the feasibility of obtaining at 3 T a spatial resolution that approximates that of MDCT. The acquisition in-plane pixel dimensions are as small as 350 × 350 μm² with a 1.5-mm slice thickness. Although SNR is lower, the images have improved sharpness, resulting in image quality that allows qualitative identification of disease sites on MRA consistent with MDCT.
Resumo:
BACKGROUND: Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. OBJECTIVE: The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. METHODS: MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. RESULTS: Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5V and 1.0V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. CONCLUSION: A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI.
Resumo:
PURPOSE: The goal of this study was to compare magnetic resonance enterography (MRE) and video capsule endoscopy (VCE) in suspected small bowel disease. MATERIALS AND METHODS: Nineteen patients with suspected small bowel disease participated in a prospective clinical comparison of MRE versus VCE. Both methods were evaluated separately and in conjunction with respect to a combined diagnostic endpoint based on clinical, laboratory, surgical, and histopathological findings. The Fisher's exact and j tests were used in comparing MRE and VCE. RESULTS: Small bowel pathologies were found in 15 out of 19 patients: Crohn's disease (n= 5), lymphoma (n= 4), lymphangioma (n= 1), adenocarcinoma (n= 1), postradiation enteropathy (n= 1), NSAID-induced enteropathy (n =1), angiodysplasia (n= 1), and small bowel adhesions (n= 1). VCE and MRE separately and in conjunction showed sensitivities of 92.9, 71.4, and 100% and specificities of 80, 60, and 80% (kappa= 0.73 vs. kappa = 0.29; P= 0.31/kappa = 0.85), respectively. In four patients, VCE depicted mucosal pathologies missed by MRE. MRE revealed 19 extraenteric findings in 11 patients as well as small bowel adhesions not detected on VCE (n= 1). CONCLUSION: VCE can readily depict and characterize subtle mucosal lesions missed at MRE, whereas MRE yields additional mural, perienteric, and extraenteric information. Thus, VCE and MRE appear to be complementary methods which, when used in conjunction, may better characterize suspected small bowel disease.