253 resultados para Linear Resonance Accelerator
Resumo:
Purpose of reviewThis review provides information and an update on stereotactic radiosurgery (SRS) equipment, with a focus on intracranial lesions and brain neoplasms.Recent findingsGamma Knife radiosurgery represents the gold standard for intracranial radiosurgery, using a dedicated equipment, and has recently evolved with a newly designed technology, Leksell Gamma Knife Perfexion. Linear accelerator-based radiosurgery is more recent, and originally based on existing systems, either adapted or dedicated to radiosurgery. Equipment incorporating specific technologies, such as the robotic CyberKnife system, has been developed. Novel concepts in radiation therapy delivery techniques, such as intensity-modulated radiotherapy, were also developed; their integration with computed tomography imaging and helical delivery has led to the TomoTherapy system. Recent data on the management of intracranial tumors with radiosurgery illustrate the trend toward a larger use and acceptance of this therapeutic modality.SummarySRS has become an important alternative treatment for a variety of lesions. Each radiosurgery system has its advantages and limitations. The 'perfect' and ubiquitous system does not exist. The choice of a radiosurgery system may vary with the strategy and needs of specific radiosurgery programs. No center can afford to acquire every technology, and strategic choices have to be made. Institutions with large neurosurgery and radiation oncology programs usually have more than one system, allowing optimization of the management of patients with a choice of open neurosurgery, radiosurgery, and radiotherapy. Given its minimally invasive nature and increasing clinical acceptance, SRS will continue to progress and offer new advances as a therapeutic tool in neurosurgery and radiotherapy.
Resumo:
Studies in adults have shown that late gadolinium enhanced cardiac magnetic resonance is a safe and noninvasive diagnostic tool which allows one to differentiate myocardial infarction from myocarditis. We believe that it may also be highly useful in the paediatric population for the same purpose.
Resumo:
PURPOSE: To investigate the feasibility of high-resolution selective three-dimensional (3D) magnetic resonance coronary angiography (MRCA) in the evaluation of coronary artery stenoses. MATERIALS AND METHODS: In 12 patients with coronary artery stenoses, MRCA of the coronary artery groups, including the coronary segments with stenoses of 50% or greater based on conventional x-ray coronary angiography (CAG), was performed with double-oblique imaging planes by orienting the 3D slab along the major axis of each right coronary artery-left circumflex artery (RCA-LCX) group and each left main trunk-left anterior descending artery (LMT-LAD) group. Ten RCA-LCX and five LMT-LAD MR angiograms were obtained, and the results were compared with those of conventional x-ray angiography. RESULTS: Among 70 coronary artery segments expected to be covered, a total of 49 (70%) segments were fully demonstrated in diagnostic quality. The identification of segmental location of stenoses showed as high an accuracy as 96%. The retrospective analysis for stenosis of 50% or greater yielded the sensitivity, specificity, and accuracy of 80%, 85%, and 84%, respectively. CONCLUSION: Selective 3D MRCA has the potential for segment-by-segment evaluation of major portions of the right and left coronary arteries with high accuracy.
Resumo:
Objectives: Magnetic resonance (MR) imaging and spectroscopy (MRS) allow the establishment of the anatomical evolution and neurochemical profiles of ischemic lesions. The aim of the present study was to identify markers of reversible and irreversible damage by comparing the effects of 10-mins middle cerebral artery occlusion (MCAO), mimicking a transient ischemic attack, with the effects of 30-mins MCAO, inducing a striatal lesion. Methods: ICR-CD1 mice were subjected to 10-mins (n = 11) or 30-mins (n = 9) endoluminal MCAO by filament technique at 0 h. The regional cerebral blood flow (CBF) was monitored in all animals by laser- Doppler flowmetry with a flexible probe fixed on the skull with < 20% of baseline CBF during ischemia and > 70% during reperfusion. All MR studies were carried out in a horizontal 14.1T magnet. Fast spin echo images with T2-weighted parameters were acquired to localize the volume of interest and evaluate the lesion size. Immediately after adjustment of field inhomogeneities, localized 1H MRS was applied to obtain the neurochemical profile from the striatum (6 to 8 microliters). Six animals (sham group) underwent nearly identical procedures without MCAO. Results: The 10-mins MCAO induced no MR- or histologically detectable lesion in most of the mice and a small lesion in some of them. We thus had two groups with the same duration of ischemia but a different outcome, which could be compared to sham-operated mice and more severe ischemic mice (30-mins MCAO). Lactate increase, a hallmark of ischemic insult, was only detected significantly after 30-mins MCAO, whereas at 3 h post ischemia, glutamine was increased in all ischemic mice independently of duration and outcome. In contrast, glutamate, and even more so, N-acetyl-aspartate, decreased only in those mice exhibiting visible lesions on T2-weighted images at 24 h. Conclusions: These results suggest that an increased glutamine/glutamate ratio is a sensitive marker indicating the presence of an excitotoxic insult. Glutamate and NAA, on the other hand, appear to predict permanent neuronal damage. In conclusion, as early as 3 h post ischemia, it is possible to identify early metabolic markers manifesting the presence of a mild ischemic insult as well as the lesion outcome at 24 h.
Resumo:
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
Resumo:
Recently, a number of cases of smuggling dissolved cocaine in wine bottles have been reported. The aim of the present study was to determine whether cocaine dissolved in wine can be detected by proton magnetic resonance spectroscopy ((1) H MRS) on a standard clinical MR scanner, in intact (i.e. unopened) wine bottles. (1) H MRS experiments were performed with a 3 Tesla clinical scanner on wine phantoms with or without cocaine contamination. The aromatic protons of cocaine displayed resonance peaks in the 7-8 ppm region of the spectrum, where no overlapping resonances of wine were present. Additional cocaine resonances were detected in the 2-3 ppm region of the spectrum, between the resonances of ethanol and other wine constituents. Detection of cocaine in wine (at 5 mM, i.e. ∼1.5 g/L) was feasible in a scan time of 1 min. We conclude that dissolved cocaine can be detected in intact wine bottles, on a standard clinical MR scanner. Thus, (1) H MRS is the technique of choice to examine this type of suspicious cargo, since it allows for a non-destructive and rapid content characterization. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
Tractography is a class of algorithms aiming at in vivo mapping the major neuronal pathways in the white matter from diffusion magnetic resonance imaging (MRI) data. These techniques offer a powerful tool to noninvasively investigate at the macroscopic scale the architecture of the neuronal connections of the brain. However, unfortunately, the reconstructions recovered with existing tractography algorithms are not really quantitative even though diffusion MRI is a quantitative modality by nature. As a matter of fact, several techniques have been proposed in recent years to estimate, at the voxel level, intrinsic microstructural features of the tissue, such as axonal density and diameter, by using multicompartment models. In this paper, we present a novel framework to reestablish the link between tractography and tissue microstructure. Starting from an input set of candidate fiber-tracts, which are estimated from the data using standard fiber-tracking techniques, we model the diffusion MRI signal in each voxel of the image as a linear combination of the restricted and hindered contributions generated in every location of the brain by these candidate tracts. Then, we seek for the global weight of each of them, i.e., the effective contribution or volume, such that they globally fit the measured signal at best. We demonstrate that these weights can be easily recovered by solving a global convex optimization problem and using efficient algorithms. The effectiveness of our approach has been evaluated both on a realistic phantom with known ground-truth and in vivo brain data. Results clearly demonstrate the benefits of the proposed formulation, opening new perspectives for a more quantitative and biologically plausible assessment of the structural connectivity of the brain.
Resumo:
High-dose dobutamine magnetic resonance stress testing has been shown to be superior to dobutamine stress echocardiography for diagnosis of coronary artery disease (CAD). We determined the feasibility of quantitative myocardial tagging during low- and high-dose dobutamine stress and tested the ability of global systolic and diastolic quantitative parameters to identify patients with significant CAD. Twenty-five patients suspected of having significant CAD were examined with a standard high-dose dobutamine/atropine stress magnetic resonance protocol (1.5-T scanner, Philips). All patients underwent invasive coronary angiography as the standard of reference for the presence (n = 13) or absence (n = 12) of significant CAD. During low-dose dobutamine stress, systolic (circumferential shortening, systolic rotation, and systolic rotation velocity) and diastolic (velocity of circumferential lengthening and diastolic rotation velocity) parameters changed significantly in patients without CAD (all P < 0.05 vs. rest) but not in patients with CAD. Identification of patients without and with CAD during low-dose stress was possible using the diastolic parameter of "time to peak untwist." At high-dose stress, none of the global systolic or diastolic parameters showed the potential to identify the presence of significant CAD. With myocardial tagging, a quantitative analysis of systolic and diastolic function was feasible during low- and high-dose dobutamine stress. In our study, the diastolic parameter of time to peak untwist as assessed during low-dose dobutamine stress was the most promising global parameter for identification of patients with significant CAD. Thus quantitative myocardial tagging may become a tool that reduces the need for high-dose dobutamine stress.
Resumo:
Electromagnetic fields arising from magnetic resonance imaging (MRI) can cause various clinically relevant functional disturbances in patients with cardiac pacemakers. Consequently, an implanted pacemaker is generally considered a contraindication for an MRI scan. With approximately 60 million MRI scans performed worldwide per year, MRI may be indicated for an estimated majority of pacemaker patients during the lifetime of their pacemakers. The availability of MR conditional pacemakers with CE labelling is of particular advantage since they allow the safe use of pacemakers in MRI. In this article the current state of knowledge on pacemakers and MR imaging is discussed. We present the results of a survey conducted among Swiss radiologists to assess current practice in patients with pacemakers.
Resumo:
BACKGROUND: We sought to improve upon previously published statistical modeling strategies for binary classification of dyslipidemia for general population screening purposes based on the waist-to-hip circumference ratio and body mass index anthropometric measurements. METHODS: Study subjects were participants in WHO-MONICA population-based surveys conducted in two Swiss regions. Outcome variables were based on the total serum cholesterol to high density lipoprotein cholesterol ratio. The other potential predictor variables were gender, age, current cigarette smoking, and hypertension. The models investigated were: (i) linear regression; (ii) logistic classification; (iii) regression trees; (iv) classification trees (iii and iv are collectively known as "CART"). Binary classification performance of the region-specific models was externally validated by classifying the subjects from the other region. RESULTS: Waist-to-hip circumference ratio and body mass index remained modest predictors of dyslipidemia. Correct classification rates for all models were 60-80%, with marked gender differences. Gender-specific models provided only small gains in classification. The external validations provided assurance about the stability of the models. CONCLUSIONS: There were no striking differences between either the algebraic (i, ii) vs. non-algebraic (iii, iv), or the regression (i, iii) vs. classification (ii, iv) modeling approaches. Anticipated advantages of the CART vs. simple additive linear and logistic models were less than expected in this particular application with a relatively small set of predictor variables. CART models may be more useful when considering main effects and interactions between larger sets of predictor variables.
Resumo:
Rupture of a congenital aneurysm of the sinus of Valsalva is a rare congenital cardiac malformation. This case report describes a congenital aneurysm of the sinus of Valsalva which ruptured into the right ventricle in a 3-year-old girl. The exact route of the fistula through the cardiac walls and the localization of the rupture into the right ventricle was not completely defined by two-dimensional and color Doppler echocardiography and could be determined only by magnetic resonance imaging (MRI).
Resumo:
PURPOSE: The purposes of this study were to (1) develop a high-resolution 3-T magnetic resonance angiography (MRA) technique with an in-plane resolution approximate to that of multidetector coronary computed tomography (MDCT) and a voxel size of 0.35 × 0.35 × 1.5 mm³ and to (2) investigate the image quality of this technique in healthy participants and preliminarily in patients with known coronary artery disease (CAD). MATERIALS AND METHODS: A 3-T coronary MRA technique optimized for an image acquisition voxel as small as 0.35 × 0.35 × 1.5 mm³ (high-resolution coronary MRA [HRC]) was implemented and the coronary arteries of 22 participants were imaged. These included 11 healthy participants (average age, 28.5 years; 5 men) and 11 participants with CAD (average age, 52.9 years; 5 women) as identified on MDCT. In addition, the 11 healthy participants were imaged using a method with a more common spatial resolution of 0.7 × 1 × 3 mm³ (regular-resolution coronary MRA [RRC]). Qualitative and quantitative comparisons were made between the 2 MRA techniques. RESULTS: Normal vessels and CAD lesions were successfully depicted at 350 × 350 μm² in-plane resolution with adequate signal-to-noise ratio (SNR) and contrast-to-noise ratio. The CAD findings were consistent among MDCT and HRC. The HRC showed a 47% improvement in sharpness despite a reduction in SNR (by 72%) and in contrast-to-noise ratio (by 86%) compared with the regular-resolution coronary MRA. CONCLUSION: This study, as a first step toward substantial improvement in the resolution of coronary MRA, demonstrates the feasibility of obtaining at 3 T a spatial resolution that approximates that of MDCT. The acquisition in-plane pixel dimensions are as small as 350 × 350 μm² with a 1.5-mm slice thickness. Although SNR is lower, the images have improved sharpness, resulting in image quality that allows qualitative identification of disease sites on MRA consistent with MDCT.