107 resultados para Jurassic Period
Resumo:
An analysis is presented of the diversity and faunal turnover of Jurassic ammonites related to transgressive /regressive events. The data set contained 400 genera and 1548 species belonging to 67 ammonite zones covering the entire Jurassic System. These data were used in the construction of faunal turnover curves and ammonite diversities, that correlate with sea-level fluctuation curves. Twenty-four events of ammonite faunal turnover are analyzed throughout the Jurassic. The most important took place at the Sinemurian-Carixian boundary, latest Carixian-Middle Domerian, Domerian-Toarcian boundary, latest Middle Toarcian-Late Toarcian, Toarcian-Aalenian boundary, latest Aalenian-earliest Bajocian, latest Early Bajocian-earliest Late Bojocian, Early Bathonian-Middle Bathonian boundary, latest Middle Bathonian-earliest Late Bathonian, latest Bathonian-Early Callovian, earliest Early Oxfordian-Middle Oxfordian, earliest Late Oxfordian-latest Oxfordian, latest Early Kimmeridgian, Late Kimmeridgian, middle Early Tithonian and Early Tithonian-Late Tithonian boundary. More than 75 percent of these turnovers correlate with regressive-transgressive cycles in the Exxon, and /or Hallam's sea-level curves. Inmost cases the extinction events coincide with regressive intervals, whereas origination and radiation events are related to transgressive cycles. The turnovers frequently coincide with major or minor discontinuities in the Subbetic basin (Betic Cordillera).
Resumo:
Prior to their Alpine overprinting, most of the pre-Mesozoic basement areas in Alpine orogenic structures shared a complex evolution, starting with Neoproterozoic sediments that are thought to have received detrital input from both West and East Gondwanan cratonic sources. A subsequent Neoproterozoic-Cambrian active margin setting at the Gondwana margin was followed by a Cambrian-Ordovician rifting period, including an Ordovician cordillera-like active margin setting. During the Late Ordovician and Silurian periods, the future Alpine domains recorded crustal extension along the Gondwana margin, announcing the future opening of the Paleotethys oceanic domain. Most areas then underwent Variscan orogenic events, including continental subduction and collisions with Avalonian-type basement areas along Laurussia and the juxtaposition and the duplication of terrane assemblages during strike slip, accompanied by contemporaneous crustal shortening and the subduction of Paleotethys under Laurussia. Thereafter, the final Pangea assemblage underwent Triassic and Jurassic extension, followed by Tertiary shortening, and leading to the buildup of the Alpine mountain chain. Recent plate-tectonic reconstructions place the Alpine domains in their supposed initial Cambrian-Ordovician positions in the eastern part of the Gondwana margin, where a stronger interference with the Chinese blocks is proposed, at least from the Ordovician onward. For the Visean time of the Variscan continental collision, the distinction of the former tectonic lower-plate situation is traceable but becomes blurred through the subsequent oblique subduction of Paleotethys under Laurussia accompanied by large-scale strike slip. Since the Pennsylvanian, this global collisional scenario has been replaced by subsequent and ongoing shortening and strike slip under rising geothermal conditions, and all of this occurred before all these puzzle elements underwent the complex Alpine reorganization.
Resumo:
Fossil biogenic phosphate of fast-growing primary bone tissue of dinosaurs can preserve a histologic and isotopic time-series of annual seasonality in temperature variations, similar to tooth enamel and other accretionary skeletal phases such as corals or wood. On two bone fragments from sympatric dinosaurs with different histologic patterns of bone growth, high-resolution oxygen isotope profiles were analyzed along the radial direction of bone growth. The investigated specimens are from the Jurassic Shishugou Formation in the Junggar Basin, NW China and have distinct patterns of compositional variation. A fibrolamellar dinosaur bone with multiple lines of arrested growth (LAGs) and periodic growth cycles of decreasing bone laminae thickness displays a cyclic intra-bone variation in delta(18)O values of about 2parts per thousand corresponding with the LAGs. These growth cycles in fast-growing fibrolamellar bone provide evidence for seasonal growth of dinosaurs in lower latitudes ( similar to 45degreesN), possibly influenced by a monsoon-type paleoclimate. Seasonal changes in temperature and water supply are consistent with the oxygen isotope composition measured in dinosaur bone phosphate as well as with growth rings in contemporaneous fossil conifer wood from the same locality. In contrast, a plexiform sympatric sauropod bone displays continuous growth, free of LAGs and has a lower intra-bone variation of less than or equal to 0.8parts per thousand. Differences in bone histology are also reflected in the oxygen isotopic composition and its intra-bone variability, indicating different physiological responses to external climatic stress between sympatric dinosaur species. Seasonal intra-bone oxygen isotope variations combined with bone histology may thus yield new insights into species-specific response to climatic stress and its influence on dinosaur growth, formation of growth marks, growth rates, as welt as dinosaur thermophysiology. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Changes in the rate of growth and adiposity index (Quetelet index), calculated as weight/(length)2, kg/m2, were monitored from birth to 3 years in 19 premature babies (post-conceptional age 31.2 +/- 2 weeks) who were subjected during rapid growth (16 +/- 4 g/kg.day) to initial metabolic balance studies in the first weeks of life. These studies showed that the rate of fat accretion in these infants (3.3 +/- 0.9 g/kg.day) was substantially greater than that observed in fetuses of the same gestational age (2 g/kg.day) but the adiposity index was lower (9.6 +/- 1 kg/m2) than intrauterine values (11 kg/m2). Since at 6 months of age (corrected for gestational age at birth) the adiposity index was close to normality (103% of standard), the greater rate of fat accretion in early life contributed to progressively restore total body fat in premature babies. It is concluded that despite substantial fat deposition during the first weeks of life, the future evolution of these premature babies is favourable as judged from the normalization of adiposity index within the first 2 years of life.
Resumo:
We present a new model to explain the origin, emplacement and stratigraphy of the Nicoya Complex in the NW part of the Nicoya Peninsula (Costa Rica) based on twenty-five years of field work, accompanied with the evolution of geochemical, vulcanological, petrological, sedimentological and paleontological paradigms. The igneous-sedimentary relation, together with radiolarian biochronology of the NW-Nicoya Peninsula is re-examined. We interpret the Nicoya Complex as a cross-section of a fragment of the Late Cretaceous Caribbean Plateau, in which the deepest levels are exposed in the NW-Nicoya Peninsula. Over 50% of the igneous rocks are intrusive (gabbros and in less proportion plagiogranites) which have a single mantle source; the remainder are basalts with a similar geochemical signature. Ar39/Ar40 radioisotopic whole rock and plagioclase ages range throughout the area from 84 to 83 Ma (Santonian) for the intrusives, and from 139 to 88 Ma (Berriasian-Turonian) for the basalts. In contrast, Mn-radiolarites that crop out in the area are older in age, Bajocian (Middle Jurassic) to Albian (middle Cretaceous). These Mn-radiolaritic blocks are set in a "matrix" of multiple gabbros and diabases intrusions. Chilled margins of magmatites, and hydrothermal baking and leaching of the radiolarites confirm the Ar39/Ar40 dating of igneous rocks being consistently younger than most of the radiolarian cherts. No Jurassic magmatic basement has been identified on the Nicoya Peninsula. We interpret the Jurassic-Cretaceous chert sediment pile to have been disrupted and detached from its original basement by multiple magmatic events that occurred during the formation of the Caribbean Plateau. Coniacian-Santonian (Late Cretaceous), Fe-rich radiolarites are largely synchronous and associated with late phases of the Plateau.
Resumo:
Humans spend one third of their life sleeping, then we could raise the basic question: Why do we sleep? Despite the fact that we still don't fully understand its function, we made much progress in understanding at different levels how sleep is regulated. One model suggests that sleep is regulated by two processes: a homeostatic process that tracks the need for sleep and by a circadian rhythm that determines the preferred time-of-day sleep occurs. At the molecular level circadian rhythms are a property of interlocking transcriptional regula-tors referred to as clock genes. The heterodimeric transcription factors BMAL1::CLOCK/NPAS2 drive the transcription of many target genes including the clock genes Cryptochome1 (Cry1), Cry2, Period1 (Per1), and Per2. The encoded CRY/PER proteins are transcriptional inhibitors of BMAL1::CLOCK/NPAS2 thereby providing negative feedback to their own transcription. These genes seem, however, also involved in sleep homeostasis because the brain expression of clock genes, es-pecially that of Per2, increase as a function of time-spent-awake and because mice lacking clock genes display altered sleep homeostasis. The aim of first part of my doctoral work has been to advance our understanding the link that exists between sleep homeostasis and circadian rhythms investigating a possible mechanism by which sleep deprivation could alter clock gene expression by quantifying DNA-binding of the core-clock genes BMAL1, CLOCK and NPAS2 to their target chromatin loci including the E-box enhancers of the Per2 promoter. We made use of chromatin immunoprecipitation (ChIP) and quantitative poly-merase chain reaction (qPCR) to show that DNA-binding of CLOCK and BMAL1 to their target genes changes as a function of time-of-day in both liver and cerebral cortex. We then performed a 6h sleep deprivation (SD) and observed a significant decrease in DNA-binding of CLOCK and BMAL1 to Dbp. This is consistent with a decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was similarly decreased following SD. However, SD has been previously shown to in-crease Per2 expression in the cortex which seems paradoxical. Our results demonstrate that sleep-wake history can affect the molecular clock machinery directly at the level of the chromatin thereby altering the cortical expression of Dbp and Per2, and likely other targets. However, the precise dy-namic relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive. The second aim of my doctoral work has been to perform an in depth characterization of cir-cadian rhythmicity, sleep architecture, analyze the response to SD in full null-Per2 knock-out (Per2-/-) mice, and Per1-/- mice, as well as their double knock-out offspring (Per1,2-/-) and littermate wildtype (Wt) mice. The techniques used include locomotor activity recording by passive infrared (PIR) sen-sors, EEG/EMG surgery, recording, and analysis, and cerebral cortex extraction and quantification of mRNA levels by qPCR. Under standard LD12:12 conditions, we found that wakefulness onset, as well as the time courses of clock gene expression in the brain and corticosterone plasma levels were ad-vanced by about 2h in Per2-/- mice compared to Wt mice. When released under constant dark condi-tions almost all Per2-/- mice (97%) became arrhythmic immediately. From these observations, we conclude that while Per2-/- mice seem to be able to anticipate dark onset, this does not result from a self-sustained circadian clock. Our results suggest instead that the earlier onset of activity results from a labile, not-self sustained 22h rhythm linked to light onset suggesting the existence of a light-driven rhythm. Analyses of sleep under LD12:12 conditions revealed that in both Per2-/- and Per1,2-/- mice the same sleep phenotypes are observed compared to Wt mice: increased NREM sleep frag-mentation and inability to adequately compensate the loss of NREM sleep. That suggests a possible role of PER2 in sleep consolidation and recovery.
Resumo:
Accreted terranes, comprising a wide variety of Late Jurassic and Early Cretaceous igneous and sedimentary rocks are an important feature of Cuban geology. Their characterization is helpful for understanding Caribbean paleogeography. The Guaniguanico terrane (western Cuba) is formed by upper Jurassic platform sediments intruded by microgranular dolerite dykes. The geochemical characteristics of the dolerite whole rock samples and their minerals (augitic clinopyroxene, labradorite and andesine) are consistent with a tholeiitic affinity. Major and trace element concentrations as well as Nd, Sr and Pb isotopes show that these rocks also have a continental affinity. Sample chemistry indicates that these lavas are similar to a low Ti-P2O5 (LTi) variety of continental flood basalts (CFB) similar to the dolerites of Ferrar (Tasmania). They derived from mixing of a lithospheric mantle Source and an asthenopheric component similar to E-MORB with minor markers of crustal contamination and sediment assimilation. However, the small quantity of Cuban magmatic rocks, similarly to Tasmania, Antarctica and Siberia differs from other volumetrically important CFB occurrences Such as Parana and Deccan. These dolerites are dated as 165-150 Ma and were emplaced during the separation of the Yucatan block from South America. They could in fact be part of the Yucatan-South America margin through which the intrusive system was emplaced and which was later accreted to the Cretaceous arc of central Cuba and to the Palaeogene arc of eastern Cuba. These samples could therefore reflect the pre-rift stage between North and South America and the opening of the gulf of Mexico.
Resumo:
The Fuerteventura Jurassic sedimentary succession consists of oceanic and elastic deposits, the latter derived from the southwestern Moroccan continental margin. Normal mid-oceanic-ridge basalt (N-MORB) flows and breccias are found at the base of the sequence and witness sea-floor spreading events in the central Atlantic. These basalts were extruded in a postrift environment (post-late Pliensbachian), We propose a Toarcian age for the Atlantic oceanic floor in this region, on the basis of the presence higher up in the sequence of the Bositra buchi filament microfacies (Aalenian-Bajocian) and of elastic deposits reflecting tectono-eustatic events (e.g,, late Toarcian to mid-Callovian erosion of the rift shoulder). The S-l sea-floor oceanic magnetic anomaly west of Fuerteventura is therefore at least Toarcian in age. The remaining sequence records Atlantic-Tethyan basinal facies (e.g., Callovian-Oxfordian red clays, Aptian-Albian black shales) alternating with elastic deposits (e.g., Kimmeridgian-Berriasian periplatform calciturbidites and a Lower Cretaceous deep-sea fan system). The Fuerteventura N-MORB outcrops represent the only Early Jurassic oceanic basement described so far in the central Atlantic. They are covered by a 1600 m, nearly continuous sedimentary sequence which extends to Upper Cretaceous facies.
Resumo:
This paper presents the first quantitative study of the Early Jurassic recovery of ammonoids after the end-Triassic mass extinction based on detailed U-Pb ID-TIMS (isotope dilution thermal ionization mass spectrometry) geochronology from ash bed zircons placed within a clear phylogenetical and biochronological framework at the subzonal and species level. This study was triggered by the discovery of a rich Peruvian succession of ammonites, deposited concomitantly with an unusually large number of ash beds. Two major phases of rediversification are observed during the Psiloceras spelae and Angulaticeras zones that correspond to positive peaks in the delta C-13(org) curve, providing a possible link between biodiversity and the global carbon cycle. In the case of the post-extinction recovery, the development of the earliest Hettangian ammonites occurs within the genus Psiloceras, which begins with the occurrence of P. spelae and then explodes into worldwide development of smooth psiloceratids of the Psiloceras planorbis group s.l. This rapid biodiversification likely occurred less than 100 ka after the end-Triassic crisis; the genus Psiloceras occupied all the possible ecological niches worldwide, from the Pacific deep waters to the NW European shallow deposits and also in some rare Tethyan occurrences like at Germig in Tibet. This global dispersion allowed the differentiation of the group in several major phyla, the Schlotheimiidae, Discamphiceratinae, Arietitidae and Lytocerataceae, which were the roots of all other Jurassic and Cretaceous ammonites. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Q fever is a worldwide zoonotic infectious disease due to Coxiella burnetii. The clinical presentation may be acute (pneumonia and/or hepatitis) or chronic (most commonly endocarditis). Diagnosis mainly relies on serology and PCR. We therefore developed a quantitative real-time PCR. We first tested blindly its performance on various clinical samples and then, when thoroughly validated, we applied it during a 7-year period for the diagnosis of both acute and persistent C. burnetii infection. Analytical sensitivity (< 10 copies/PCR) was excellent. When tested blindly on 183 samples, the specificity of the PCR was 100% (142/142) and the sensitivity was 71% (29/41). The sensitivity was 88% (7/8) on valvular samples, 69% (20/29) on blood samples and 50% (2/4) on urine samples. This new quantitative PCR was then successfully applied for the diagnosis of acute Q fever and endovascular infection due to C. burnetii, allowing the diagnosis of Q fever in six patients over a 7-year period. During a local small cluster of cases, the PCR was also applied to blood from 1355 blood donors; all were negative confirming the high specificity of this test. In conclusion, we developed a highly specific method with excellent sensitivity, which may be used on sera for the diagnosis of acute Q fever and on various samples such as sera, valvular samples, aortic specimens, bone and liver, for the diagnosis of persistent C. burnetii infection.
Resumo:
The carbon isotopic signature of carbonates depends on secular variations of organic carbon and carbonate carbon production/burial rates. A decrease in carbonate productivity makes the organic/carbonate carbon ratio unstable up to the point that even minor variations in the organic carbon reservoirs can provoke carbon isotopic shifts. The delta(13)C positive shifts of the middle Carixian (early Pliensbachian) and the early Bajocian recorded in the Umbria-Marche-Sabina domain represent a good example of this mechanism. Both sedimentology and lithostratigraphy of pelagic platform-basin carbonate systems in this area show that important changes in the source of carbonates correspond to the observed isotopic shifts. The middle Carixian event is in fact well correlatable to the drastic reduction of benthic carbonate production on rift-related intrabasinal highs, which then became pelagic carbonate platforms. The early Bajocian event is concomitant with the beginning of a long hiatus on the pelagic carbonate platforms and with a drop of the biodiversity of calcareous organisms followed by the onset of biosiliceous sedimentation in basins. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Background: We aimed to analyze the rate and time distribution of pre- and post-morbid cerebrovascular events in a single ischemic stroke population, and whether these depend on the etiology of the index stroke. Methods: In 2,203 consecutive patients admitted to a single stroke center registry (ASTRAL), the ischemic stroke that led to admission was considered the index event. Frequency distribution and cumulative relative distribution graphs of the most recent and first recurrent event (ischemic stroke, transient ischemic attack, intracranial or subarachnoid hemorrhage) were drawn in weekly and daily intervals for all strokes and for all stroke types. Results: The frequency of events at identical time points before and after the index stroke was mostly reduced in the first week after (vs. before) stroke (1.0 vs. 4.2%, p < 0.001) and the first month (2.7 vs. 7.4%, p < 0.001), and then ebbed over the first year (8.4 vs. 13.1%, p < 0.001). On daily basis, the peak frequency was noticed at day -1 (1.6%) with a reduction to 0.7% on the index day and 0.17% 24 h after. The event rate in patients with atherosclerotic stroke was particularly high around the index event, but 1-year cumulative recurrence rate was similar in all stroke types. Conclusions: We confirm a short window of increased vulnerability in ischemic stroke and show a 4-, 3- and 2-fold reduction in post-stroke events at 1 week, 1 month and 1 year, respectively, compared to identical pre-stroke periods. This break in the 'stroke wave' is particularly striking after atherosclerotic and lacunar strokes.