104 resultados para Invasion ecology
Resumo:
Glioblastomas (GBMs) are the most frequent and malignant brain tumors in adults. Glucocorticoids (GCs) are routinely used in the treatment of GBMs for their capacity to reduce the tumor-associated edema. Few in vitro studies have suggested that GCs inhibit the migration and invasion of GBM cells through the induction of MAPK phosphatase 1 (MKP-1). Macrophage migration inhibitory factor (MIF), an endogenous GC antagonist is up-regulated in GBMs. Recently, MIF has been involved in tumor growth and migration/invasion and specific MIF inhibitors have been developed on their capacity to block its enzymatic tautomerase activity site. In this study, we characterized several glioma cell lines for their MIF production. U373 MG cells were selected for their very low endogenous levels of MIF. We showed that dexamethasone inhibits the migration and invasion of U373 MG cells, through a glucocorticoid receptor (GR)- dependent inhibition of the ERK1/2 MAPK pathway. Oppositely, we found that exogenous MIF increases U373 MG migration and invasion through the stimulation of the ERK1/2 MAP kinase pathway and that this activation is CD74 independent. Finally, we used the Hs 683 glioma cells that are resistant to GCs and produce high levels of endogenous MIF, and showed that the specific MIF inhibitor ISO-1 could restore dexamethasone sensitivity in these cells. Collectively, our results indicate an intricate pathway between MIF expression and GC resistance. They suggest that MIF inhibitors could increase the response of GBMs to corticotherapy.
Resumo:
Purpose: To evaluate the diagnostic value of specific MR features for detection of suspected placental invasion according to observers' experience.Methods and Materials: Our study population included 25 pregnant women (mean age 35.16) investigated by prenatal MRI. In twelve out of them placental invasion was histopathologically proven, the 13 other women (52%) without placental invasion served as control group. Multiplanar T1- and T2-weighted sequences had been performed mostly without IV contrast injection (1.5 T). MR examinations of the two groups were rendered anonymous, mixed, then independently and retrospectively reviewed by two senior and two junior radiologists in view of 8 MR features indicating placentar invasion including the degree. Results were compared with surgical diagnosis (placenta normal/increta/accreta/percreta). Interobserver agrement between senior and junior readers were calculated. Stepwise logistic regression and receiver operating (ROC) curvers were performed.Results: Demographics between the two groups were not statistically different. Overall sensitivity and specificity for detecting placentar invasion was 90.9% and 75.0% for senior readers, and 81.8% and 61.8% for junior readers respectively. The most significant MR features indicating placentar invasion were T2 hypointense placental bands, followed by placenta praevia, focally interrupted myometrial border, posterior placental insertion, and heterogeneous placental signal. For each of the evaluated MR features the interobserver agreement kappa between the two senior readers was superior than that between the junior readers, ranging from bad (<0.4) to good (0.4-0.75).Conclusions: MRI can be a reliable and reproducible tool for detection of suspected placentar invasion, however very variable according to the observers' experience.
Resumo:
Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-g revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-g in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-g activity in Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-9 revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-9 in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-9 activity in those cells and therefore prevent MMP-9-induced activation of TGF-b, which results in increased invasion. Curiously, xenografts of SW480 colorectal adenocarcinoma cells stably expressing the FN domain of MMP-9 displayed reduced growth at both the primary (subcutaneous) injection site and the lungs of NOD/SCID mice, in experimental metastasis assays, whilst the same cells overexpressing wt MMP-9 showed enhanced growth and dissemination. Gelatin zymography of conditioned medium revealed that these effects may be due to the FN domain, which displaces MMP-9 from SW480 cell surface. These observations suggest a dual role of MMP-9 and its FN domain in primary tumor growth and metastasis, underscoring the notion that the effect of MMP-9 on tumor cells may depend on the cell type and highlighting possible protective effects of MMPs in tumor progression.
Resumo:
Social organisms exhibit conspicuous intraspecific variation in all facets of their social organization. A prominent example of such variation in the highly eusocial Hymenoptera is differences in the number of reproductive queens per colony, Differences in queen number in ants are associated with differences in a host of reproductive and social traits, including queen phenotype and breeding strategy, mode of colony reproduction, and pattern of sex allocation. We examine the causes and consequences of changes in colony queen number and associated traits using the fire ant Solenopsis invicta as a principal model. Ecological constraints on mode of colony founding may act as important selective forces causing the evolution of queen number in this and many other ants, with social organization generally perpetuated across generations by means of the social environment molding appropriate queen phenotypes and reproductive strategies. Shifts in colony queen number have profound effects on genetic structure within nests and may also influence genetic structure at higher levels (aggregations of nests or local demes) because of the association of queen number with particular mating and dispersal habits. Divergence of breeding habits between populations with different social organizations has the potential to promote genetic differentiation between these social variants. Thus, evolution of social organization can be important in generating intrinsic selective regimes that channel subsequent social evolution and in initiating the development of significant population genetic structure, including barriers to gene flow important in cladogenesis.
Resumo:
BACKGROUND: The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). METHODS: Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. RESULTS: The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. CONCLUSION: Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host.
Resumo:
In adult macaque monkeys subjected to an incomplete spinal cord injury (SCI), corticospinal (CS) fibers are rarely observed to grow in the lesion territory. This situation is little affected by the application of an anti-Nogo-A antibody which otherwise fosters the growth of CS fibers rostrally and caudally to the lesion. However, when using the Sternberger monoclonal-incorporated antibody 32 (SMI-32), a marker detecting a non-phosphorylated neurofilament epitope, numerous SMI-32-positive (+) fibers were observed in the spinal lesion territory of 18 adult macaque monkeys; eight of these animals had received a control antibody infusion intrathecally for 1month after the injury, five animals an anti-Nogo-A antibody, and five animals received an anti-Nogo-A antibody together with brain-derived neurotrophic factor (BDNF). These fibers occupied the whole dorso-ventral axis of the lesion site with a tendency to accumulate on the ventral side, and their trajectories were erratic. Most of these fibers (about 87%) were larger than 1.3μm and densely SMI-32 (+) stained. In the undamaged spinal tissue, motoneurons form the only large population of SMI-32 (+) neurons which are densely stained and have large diameter axons. These data therefore suggest that a sizeable proportion of the fibers seen in the lesion territory originate from motoneurons, although fibers of other origins could also contribute. Neither the presence of the antibody neutralizing Nogo-A alone, nor the presence of the antibody neutralizing Nogo-A combined with BDNF influenced the number or the length of the SMI-32 (+) fibers in the spinal lesion area. In summary, our data show that after a spinal cord lesion in adult monkeys, the lesion site is colonized by fibers, a large portion of which presumably originate from motoneurons.
Resumo:
It has been known for some time that different arbuscular mycorrhizal fungal (AMF) taxa confer differences in plant growth. Although genetic variation within AMF species has been given less attention, it could potentially be an ecologically important source of variation. Ongoing studies on variability in AMF genes within Glomus intraradices indicate that at least for some genes, such as the BiP gene, sequence variability can be high, even in coding regions. This suggests that genetic variation within an AMF may not be selectively neutral. This clearly needs to be investigated in more detail for other coding regions of AMF genomes. Similarly, studies on AMF population genetics indicate high genetic variation in AMF populations, and a considerable amount of variation seen in phenotypes in the population can be attributed to genetic differences among the fungi. The existence of high within-species genetic variation could have important consequences for how investigations on AMF gene expression and function are conducted. Furthermore, studies of within-species genetic variability and how it affects variation in plant growth will help to identify at what level of precision ecological studies should be conducted to identify AMF in plant roots in the field. A population genetic approach to studying AMF genetic variability can also be useful for inoculum development. By knowing the amount of genetic variability in an AMF population, the maximum and minimum numbers of spores that will contain a given amount of genetic diversity can be estimated. This could be particularly useful for developing inoculum with high adaptability to different environments.
Resumo:
Assessing whether the climatic niche of a species may change between different geographic areas or time periods has become increasingly important in the context of ongoing global change. However, approaches and findings have remained largely controversial so far, calling for a unification of methods. Here, we build on a review of empirical studies of invasion to formalize a unifying framework that decomposes niche change into unfilling, stability, and expansion situations, taking both a pooled range and range-specific perspective on the niche, while accounting for climatic availability and climatic analogy. This framework provides new insights into the nature of climate niche shifts and our ability to anticipate invasions, and may help in guiding the design of experiments for assessing causes of niche changes.
Resumo:
TAT-RasGAP317-326, a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP317-326. In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP317-326 to promote cell adherence and inhibit migration. These results show that TAT-RasGAP317-326, besides its ability to favor tumor cell death, hampers cell migration and invasion.
Resumo:
Staphylococcus aureus experimental endocarditis relies on sequential fibrinogen binding (for valve colonization) and fibronectin binding (for endothelial invasion) conferred by peptidoglycan-attached adhesins. Fibronectin-binding protein A (FnBPA) reconciles these two properties--as well as elastin binding--and promotes experimental endocarditis by itself. Here we attempted to delineate the minimal subdomain of FnBPA responsible for fibrinogen and fibronectin binding, cell invasion, and in vivo endocarditis. A large library of truncated constructs of FnBPA was expressed in Lactococcus lactis and tested in vitro and in animals. A 127-amino-acid subdomain spanning the hinge of the FnBPA fibrinogen-binding and fibronectin-binding regions appeared necessary and sufficient to confer the sum of these properties. Competition with synthetic peptides could not delineate specific fibrinogen- and fibronectin-binding sites, suggesting that dual binding arose from protein folding, irrespective of clearly defined binding domains. Moreover, coexpressing the 127-amino-acid subdomain with remote domains of FnBPA further increased fibrinogen binding by > or =10 times, confirming the importance of domain interactions for binding efficacy. In animals, fibrinogen binding (but not fibronectin binding) was significantly associated with endocarditis induction, whereas both fibrinogen binding and fibronectin binding were associated with disease severity. Moreover, fibrinogen binding also combined with fibronectin binding to synergize the invasion of cultured cell lines significantly, a feature correlating with endocarditis severity. Thus, while fibrinogen binding and fibronectin binding were believed to act sequentially in colonization and invasion, they appeared unexpectedly intertwined in terms of both functional anatomy and pathogenicity (in endocarditis). This unforeseen FnBPA subtlety might bear importance for the development of antiadhesin strategies.
Resumo:
Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.
Resumo:
Radiotherapy is a well-established therapeutic modality in oncology. It provides survival benefits in several different cancer types. However, cancers relapsing after radiotherapy often develop into more aggressive conditions that are difficult to treat and are associated with poor prognosis. Cumulative experimental evidence indicates that the irradiated tumor bed contributes to such aggressive behavior. The involved mechanisms have for long remained elusive. Recent progress in the field revealed previously unrecognized cellular and molecular events promoting growth, invasion, and metastasis of tumors progressing in an irradiated microenvironment. Cellular mechanisms include inhibition of sprouting angiogenesis, formation of hypoxia, activation and differentiation of stromal cells, and recruitment of bone marrow-derived cells with vasculogenic and prometastatic activities. Identified pathways include TGF-β/ALK5, CXCL12/CXCR4, KITL/KIT, and CYR61/αVβ5 integrin. The availability of pharmacologic inhibitors impinging on these pathways opens novel opportunities for translational and clinical studies. These experimental results and ongoing work highlight the importance of the irradiated microenvironment in modulating the tumor response to radiotherapy and open new opportunities for the development of novel therapeutic strategies for patients with cancer who relapse after radiotherapy. Here, we review and discuss recent advances in the field and their translational and therapeutic implications to human cancer treatment.
Resumo:
The expression of Staphylococcus aureus adhesins in Lactococcus lactis identified clumping factor A (ClfA) and fibronectin-binding protein A (FnBPA) as critical for valve colonization in rats with experimental endocarditis. This study further analyzed their role in disease evolution. Infected animals were followed for 3 d. ClfA-positive lactococci successfully colonized damaged valves, but were spontaneously eradicated over 48 h. In contrast, FnBPA-positive lactococci progressively increased bacterial titers in vegetations and spleens. At imaging, ClfA-positive lactococci were restricted to the vegetations, whereas FnBPA-positive lactococci also invaded the adjacent endothelium. This reflected the capacity of FnBPA to trigger cell internalization in vitro. Because FnBPA carries both fibrinogen- and fibronectin-binding domains, we tested the role of these functionalities by deleting the fibrinogen-binding domain of FnBPA and supplementing it with the fibrinogen-binding domain of ClfA in cis or in trans. Deletion of the fibrinogen-binding domain of FnBPA did not alter fibronectin binding and cell internalization in vitro. However, it totally abrogated valve infectivity in vivo. This ability was restored in cis by inserting the fibrinogen-binding domain of ClfA into truncated FnBPA, and in trans by coexpressing full-length ClfA and truncated FnBPA on two separate plasmids. Thus, fibrinogen and fibronectin binding could cooperate for S. aureus valve colonization and endothelial invasion in vivo.