111 resultados para Immunofluorescence.
Resumo:
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
Resumo:
PURPOSE: Local delivery of therapeutic molecules encapsulated within liposomes is a promising method to treat ocular inflammation. The purpose of the present study was to define the biodistribution of rhodamine-conjugated liposomes loaded with vasoactive intestinal peptide (VIP), an immunosuppressive neuropeptide, following their intravitreal (IVT) injection in normal rats. METHODS: Healthy seven- to eight-week-old Lewis male rats were injected into the vitreous with empty rhodamine-conjugated liposomes (Rh-Lip) or with VIP-loaded Rh-Lip (VIP-Rh-Lip; 50 mM of lipids with an encapsulation efficiency of 3.0+/-0.4 mmol VIP/mol lipids). Twenty-four h after IVT injection, the eyes, the cervical, mesenteric, and inguinal lymph nodes (LN), and spleen were collected. The phenotype and distribution of cells internalizing Rh-Lip and VIP-Rh-Lip were studied. Determination of VIP expression in ocular tissues and lymphoid organs and interactions with T cells in cervical LN was performed on whole mounted tissues and frozen tissue sections by immunofluorescence and confocal microscopy. RESULTS: In the eye, 24 h following IVT injection, fluorescent liposomes (Rh-Lip and VIP-Rh-Lip) were detected mainly in the posterior segment of the eye (vitreous, inner layer of the retina) and to a lesser extent at the level of the iris root and ciliary body. Liposomes were internalized by activated retinal Müller glial cells, ocular tissue resident macrophages, and rare infiltrating activated macrophages. In addition, fluorescent liposomes were found in the episclera and conjunctiva where free VIP expression was also detected. In lymphoid organs, Rh-Lip and VIP-Rh-Lip were distributed almost exclusively in the cervical lymph nodes (LN) with only a few Rh-Lip-positive cells detected in the spleen and mesenteric LN and none in the inguinal LN. In the cervical LN, Rh-Lip were internalized by resident ED3-positive macrophages adjacent to CD4 and CD8-positive T lymphocytes. Some of these T lymphocytes in close contact with macrophages containing VIP-Rh-Lip expressed VIP. CONCLUSIONS: Liposomes are specifically internalized by retinal Müller glial cells and resident macrophages in the eye. A limited passage of fluorescent liposomes from the vitreous to the spleen via the conventional outflow pathway and the venous circulation was detected. The majority of fluorescent liposomes deposited in the conjunctiva following IVT injection reached the subcapsular sinus of the cervical LN via conjuntival lymphatics. In the cervical LN, Rh-Lip were internalized by resident subcapsular sinus macrophages adjacent to T lymphocytes. Detection of VIP in both macrophages and T cells in cervical LN suggests that IVT injection of VIP-Rh-Lip may increase ocular immune privilege by modulating the loco-regional immune environment. In conclusion, our observations suggest that IVT injection of VIP-loaded liposomes is a promising therapeutic strategy to dampen ocular inflammation by modulating macrophage and T cell activation mainly in the loco-regional immune system.
Resumo:
The human TPTE (Transmembrane Phosphatase with TEnsin homology) gene family encodes a PTEN-related tyrosine phosphatase with four potential transmembrane domains. Chromosomal mapping revealed multiple copies of the TPTE gene on chromosomes 13, 15, 21, 22 and Y. Human chromosomes 13 and 21 copies encode two functional proteins, TPIP (TPTE and PTEN homologous Inositol lipid Phosphatase) and TPTE, respectively, whereas only one copy of the gene exists in the mouse genome. In the present study, we show that TPTE and TPIP proteins are expressed in secondary spermatocytes and/or prespermatids. In addition, we report the existence of several novel alternatively spliced isoforms of these two proteins with variable number of transmembrane domains. The latter has no influence on the subcellular localization of these different peptides as shown by co-immunofluorescence experiments. Finally, we identify another expressed TPTE copy, mapping to human chromosome 22, whose transcription appears to be under the control of the LTR of human endogenous retrovirus RTVL-H3.
Resumo:
Using both conventional fluorescence and confocal laser scanning microscopy we have investigated whether or not stabilization of isolated human erythroleukemic nuclei with sodium tetrathionate can maintain in the nuclear matrix the same spatial distribution of three polypeptides (M(r) 160 kDa and 125 kDa, previously shown to be components of the internal nuclear matrix plus the 180-kDa nucleolar isoform of DNA topoisomerase II) as seen in permeabilized cells. The incubation of isolated nuclei in the presence of 2 mM sodium tetrathionate was performed at 0 degrees C or 37 degrees C. The matrix fraction retained 20-40% of nuclear protein, depending on the temperature at which the chemical stabilization was executed. Western blot analysis revealed that the proteins studied were completely retained in the high-salt resistant matrix. Indirect immunofluorescence experiments showed that the distribution of the three antigens in the final matrix closely resembled that detected in permeabilized cells, particularly when the stabilization was performed at 37 degrees C. This conclusion was also strengthened by analysis of cells, isolated nuclei and the nuclear matrix by means of confocal laser scanning microscopy. We conclude that sodium tetrathionate stabilization of isolated nuclei does not alter the spatial distribution of some nuclear matrix proteins.
Resumo:
Using the yeast two-hybrid system, we identified ezrin as a protein interacting with the C-tail of the alpha1b-adrenergic receptor (AR). The interaction was shown to occur in vitro between the receptor C-tail and the N-terminal portion of ezrin, or Four-point-one ERM (FERM) domain. The alpha1b-AR/ezrin interaction occurred inside the cells as shown by the finding that the transfected alpha1b-AR and FERM domain or ezrin could be coimmunoprecipitated from human embryonic kidney 293 cell extracts. Mutational analysis of the alpha1b-AR revealed that the binding site for ezrin involves a stretch of at least four arginines on the receptor C-tail. The results from both receptor biotinylation and immunofluorescence experiments indicated that the FERM domain impaired alpha1b-AR recycling to the plasma membrane without affecting receptor internalization. The dominant negative effect of the FERM domain, which relies on its ability to mask the ezrin binding site for actin, was mimicked by treatment of cells with cytochalasin D, an actin depolymerizing agent. A receptor mutant (DeltaR8) lacking its binding site in the C-tail for ezrin displayed delayed receptor recycling. These findings identify ezrin as a new protein directly interacting with a G protein-coupled receptor and demonstrate the direct implication of ezrin in GPCR trafficking via an actin-dependent mechanism.
Resumo:
Résumé Objectif : L'hyperplasie intimale est un processus de remodelage vasculaire qui apparaît après une lésion vasculaire. Les mécanismes impliqués dans l'hyperplasie intimale sont la prolifération, la dédifférentiation et la migration des cellules musculaires lisses depuis la média vers l'espace sous-intimal. Nous avons émis l'hypothèse que les jonctions communicantes de type gap, qui coordonnent certains processus physiologiques tels que la croissance et la différentiation cellulaire, pouvaient participer au développement de l'hyperplasie intimale. Méthodes : Des segments de veines saphènes humaines prélevées chirurgicalement lors de pontages, ont été ouverts longitudinalement avec la surface luminale placée vers le haut et maintenus en culture pendant 14 jours. Des fragments veineux ont été préparés pour une évaluation histologique, pour des mesures de l'épaisseur de la néointima, et pour des analyses immunocytochimiques de l'ARN messager ainsi que des protéines. Résultats : Parmi les 4 connexines (Cxs 37, 40, 43 et 45) qui forment les jonctions communicantes dans les veines, nous avons focalisé notre étude sur l'expression des Cxs 43 et 40; nous avons démontré que la Cx43 est exprimée dans les cellules musculaires lisses et les cellules endothéliales alors que la Cx40 est uniquement présente dans l'endothélium. Après 14 jours en culture, des analyses histomorphométriques ont montré une augmentation significative de l'épaisseur de l'intima démontrant la présence d'hyperplasie intimale. Une analyse temporelle a révélé une augmentation progressive de la Cx43 jusqu'à une augmentation maximale de six à huit fois au niveau de l'ARN messager et des protéines après 14 jours en culture. Au contraire, l'expression de la Cx40 n'était pas modifiée. Des analyses par immunofluorescence ont montré également une augmentation de la Cx43 dans les membranes des cellules musculaires lisses de la média. Le développement de l'hyperplasie intimale in vitro est diminué en présence de fluvastatin et cette diminution est associée à une réduction de l'expression de la Cx43. Conclusions : Ces données démontrent que la Cx43 est augmentée in vitro pendant le processus d'hyperplasie intimale et que la fluvastatin prévient cette induction. Ces résultats suggèrent un rôle crucial joué par la communication intercellulaire impliquant la Cx43 dans la veine humaine durant le développement de l'hyperplasie intimale. Abstract Objective: Intimal hyperplasia is a vascular remodelling process that occurs after a vascular injury. The mechanisms involved in intimal hyperplasia are proliferation, dedifferentiation, and migration of medial smooth muscle cells towards the subintimal space. We postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, might participate in the development of intimal hyperplasia. connexin43 (Cx43) expression levels may be altered in intimal hyperplasia, and we therefore evaluated the regulated expression of Cx43 in human saphenous veins in culture in the presence or not of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. Methods: Segments of harvested human saphenous veins, obtained at the time of bypass graft, were opened longitudinally with the luminal surface uppermost and maintained in culture for 14 days. Vein fragments were then processed for histologic examination, neointimal thickness measurements, immunocytochemistry, RNA, and proteins analysis. Results: Of the four connexins (Cx37, 40, 43, and 45), we focused on Cx43 and Cx40, which we found by real-time polymerase chain reaction to be expressed in the saphenous vein because they are the predominant connexins expressed by smooth muscle cells and endothelial cells. Afrer 14 days of culture, histomorphometric analysis showed a significant increase in the intimal thickness as observed during the process of intimal hyperplasia. Atime-course analysis revealed a progressive upregulation of Cx43 to reach a maximal increase of sixfold to eightfold at both transcript and protein levels after 14 days in culture. In contrast, the expression of Cx40, abundantly expressed in the endothelial cells, was not altered. Immunofluorescence showed a large increase in Cx43 within smooth muscle cell membranes of the media layer. The development of intimal hyperplasia in vitro was decreased in presence of fluvastatin and was associated with reduced Cx43 expression. Conclusions: These data show that Cx43 is increased in vitro during the process of intimal hyperplasia and that fluvastatin could prevent this induction, supporting a critical role for Cx43-mediated gap-junctional communication in the human vein during the development of intimal hyperplasia. (J Vasc Surg 2005;41:1043-52.)
Resumo:
To evaluate the regulation of connexin expression by fluid pressure, we have studied the effects of elevated transmural urine pressure on Connexin43 (Cx43) and Cx26. We chose to focus on these two proteins out of the five connexins (Cx26, 43, 40, 37, and 45) which we found by RT-PCR to be expressed in the rat bladder, since in situ hybridization and immunofluorescence showed that Cx43 is the predominant connexin expressed by smooth muscle cells (SMC), whereas Cx26 is abundantly expressed only in the latter cell type. To evaluate whether these connexins are affected by changes in transmural urine pressure, we used a rat model of bladder outlet obstruction, in which a ligature is placed around the urethra. Under conditions of increased fluid pressure due to urine retention, we observed that the expression of both Cx43 and Cx26 increased at both transcript and protein levels, reaching a maximum 7-9 h after the ligature. Further analysis revealed that these changes were accounted for by a fourfold increase in Cx43 mRNA of SMC but not urothelial cell and by a fivefold increase in Cx26 mRNA of urothelium. Scrape-loading of propidium iodide showed that the latter change was paralleled by a twofold increase in coupling between urothelial cells. The data show that Cx43 and Cx26 are differentially regulated during bladder outlet obstruction and contribute to the response of the bladder wall to increased voiding pressure, possibly to control its elasticity.
Resumo:
Renin is cleaved from its precursor prorenin into mature renin. We investigated the impact of the renin proregion on the generation and secretion of enzymatically active renin. We compared the effects of the following sequences of human prorenin with those of wild type prorenin[1-383]: prosequence [1-43], hinge sequence [1-62], Des[1-43]prorenin ("renin"), Des[1-62]prorenin and prorenin[N260]. These sequences were individually expressed in CV1 cells (constitutive pathway model) and AtT20 cells (regulated and constitutive pathways model), and Des[1-43]prorenin was also coexpressed together with the different prosequences. Renin concentration and activity were measured in cell extracts and culture media. Deletion of the prosequence reduces renin activity in both cell types, but it leaves (total) renin concentration unchanged. Coexpression of the prosequence with renin enhances renin secretion in both cell types: Constitutively secreted renin is enhanced by coexpression of renin together with any of the prosequence containing molecules [1-43], [1-62] or prorenin[N260]. Immunofluorescence in AtT20 cells shows lysosomal typical labeling of prorenin and Des[1-43]prorenin. In AtT20 cells expressing prorenin[1-383], stimulation of regulated secretion increases prorenin but not renin release. The renin prosequence [1-43] optimizes renin activity possibly through appropriate protein folding and it enhances the constitutive secretion of (pro)renin. The major part of generated renin may be targeted to lysosomes.
Resumo:
BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic-inflammatory disease of the esophagus, characterized by esophagus-related symptoms and a dense tissue eosinophilia, both refractory to proton pump inhibitors. Topical corticosteroids have proven effective in inducing clinical and histologic remission. However, a long-term strategy for the management of this chronic disease is not yet defined. METHODS: In a randomized, double-blind, placebocontrolled, long-term trial, we evaluated the efficacy of twice-daily 0.25 mg swallowed budesonide in maintaining a remission in adult EoE with prior response to induction therapy. Pre- and post-treatment disease activity was assessed clinically, endoscopically, histologically, by immunofluorescence and by high-resolution endosonography. The primary end point was the ability to maintain histologic remission (<5 eos/hpf) of EoE in. Secondary end points were the efficacy on symptom control and on tissue remodeling as well as the determination of the safety of long-term esophageal administration of topical corticosteroids. RESULTS: During a 50-week therapy of quiescent EoE with low-dose budesonide the esophageal eosinophil load (ECP staining) increased from 1.1 to 29.9 eos/hpf, but under placebo the increase was significantly larger (0.5 to 51.1 eos/hpf; p=0.01). At the end of the studyperiod, 35.7% (5/14) of the budesonide patients were in complete and 14.3% (2/14) in partial histologic remission; with placebo no patient was in complete and 28.6% (4/14) were in partial remission (p=0.0647). The increase of the symptom score was markedly lower in budesonide- (0.79 to 2.29 points) than in placebo-patients (0.71 to 4.00 points; p=0.0875). The median time to relapse of symptoms was >125 days in the budesonide and 95 days in the placebo group (p = 0.14). Measured by high-resolution endosonography, all EoE patients had pre-treatment a highly thickened esophageal wall compared with healthy controls (3.05±1.08 mm vs. 2.18±0.35 mm; p<0.0001). Long-term topical budesonide reduced mainly the thickness of the superficial wall layers (mucosa, 0.75 mm to 0.45 mm; p=0.025) whereas the response of the deeper layers was less pronounced (submucosa 1.31 to 1.08 mm; p=0.19 and muscularis 0.82 to 0.76 mm; p=0.72). Budesonide did not evoke any mucosal atrophy. CONCLUSIONS: This study clearly demonstrates that 1) Untreated eosinophil inflammation results in an impressive remodeling of the esophagus; 2) A therapy is therefore needed; 3) The high relapse rate after short-term therapy requires a long-term management and 4) Maintenance treatment with budesonide is well tolerated and keeps half of the patients in remission.
Resumo:
hShroom1 (hShrm1) is a member of the Apx/Shroom (Shrm) protein family and was identified from a yeast two-hybrid screen as a protein that interacts with the cytoplasmic domain of melanoma cell adhesion molecule (MCAM). The characteristic signature of the Shrm family is the presence of a unique domain, ASD2 (Apx/Shroom domain 2). mRNA analysis suggests that hShrm1 is expressed in brain, heart, skeletal muscle, colon, small intestine, kidney, placenta and lung tissue, as well a variety of melanoma and other cell lines. Co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) experiments indicate that hShrm1 and MCAM interact in vivo and by immunofluorescence microscopy some co-localization of these proteins is observed. hShrm1 partly co-localises with beta-actin and is found in the Triton X-100 insoluble fraction of melanoma cell extracts. We propose that hShrm1 is involved in linking MCAM to the cytoskeleton.
Resumo:
Certain fluorescent pseudomonads can protect plants from soil-borne pathogens, and it is important to understand how these biocontrol agents survive in soil. The persistence of the biocontrol strain Pseudomonas fluorescens CHA0-Rif under plough pan conditions was assessed in non-sterile soil microcosms by counting total cells (immunofluorescence microscopy), intact cells (BacLight membrane permeability test), viable cells (Kogure's substrate-responsiveness test) and culturable cells (colony counts on selective plates) of the inoculant. Viable but non-culturable cells of CHA0-Rif (106 cells g-1 soil) were found in flooded microcosms amended with fermentable organic matter, in which the soil redox potential was low (plough pan conditions), in agreement with previous observations of plough pan samples from a field inoculated with CHA0-Rif. However, viable but non-culturable cells were not found in unamended flooded, amended unflooded or unamended unflooded (i.e. control) microcosms, suggesting that such cells resulted from exposure of CHA0-Rif to a combination of low redox potential and oxygen limitation in soil. CHA0-Rif is strictly aerobic. Its anaerobic regulator ANR is activated by low oxygen concentrations and it controls production of the biocontrol metabolite hydrogen cyanide under microaerophilic conditions. Under plough pan conditions, an anr-deficient mutant of CHA0-Rif and its complemented derivative displayed the same persistence pattern as CHA0-Rif, indicating that anr was not implicated in the formation of viable but non-culturable cells of this strain at the plough pan.
Resumo:
Purpose: The M-band is an important cytoskeletal structure in the centre of the sarcomere, believed to cross-link the thick filament lattice. Its main components are three closely related modular proteins from the myomesin gene family: Myomesin, M-protein and myomesin-3. Each muscle is characterized by its unique M-band protein composition, depending on the contractile parameters of a particular fiber. To investigate the role of the M-band in one of the most relevant and clinically increasing cardiac diseases, we analyzed the expression of myomesin proteins in dilated cardiomyopathy (DCM).Methods: In a previous study we analyzed mouse models suffering from DCM, demonstrating that the embryonic heart specific EH-myomesin splicing isoform was up-regulated directly corresponding to the degree of cardiac dysfunction and ventricular dilation. Based on this study, human ventricular and atrial samples (n=32) were obtained during heart surgery after informed consent and approval by an institutional review board. Patients were aged 30-70 years and suffered from dilated cardiomyopathy (DCM;n=13), Hypertrophic Cardiomyopathy (HCM;n=10) or served as controls (n=9). Patients suffering from DCM or HCM were in endstage heart-failure (NYHA III-IV) and either underwent heart transplantation or Left Ventricular Assist Device (LVAD) implantation. Heart samples from patients who underwent valve surgery or congenital heart surgery served as controls. Heart Samples were analyzed using RT-PCR, Western blot, and immunofluorescence.Results: By investigating the expression pattern of myomesins, we found that DCM is accompanied by specific M-band alterations, which were more pronounced in ventricular samples compared to the atrium. Changes in the amounts of different myomesins during DCM occurred in a cell-specific manner, leading to a higher heterogeneity of the cytoskeleton in cardiomyocytes through the myocardial wall with some cells switching completely to an embryonic phenotype.Conclusions: Here we present that the embryonic heart specific EH-myomesin isoform is up-regulated in human DCM. The alterations of the M-band protein composition might be part of a general adaptation of the sarcomeric cytoskeleton to unfavorable working conditions in the failing heart and may modify the mechanical properties of the cardiomyocytes. We suggest that the upregulation of EH-myomesin might play a pivotal role in DCM and might support classical imagingas a novel sarcomeric marker for this disease.
Resumo:
Purpose: We have previously demonstrated that mutations in the FAM161A gene, encoding a protein with unknown function and no similarities with other characterized sequences, cause autosomal recessive retinitis pigmentosa (RP). The purpose of this work is to investigate the functional role of FAM161A within the retina and its relationship with other proteins involved in RP. Methods: The subcellular localization of FAM161A in the retina was assessed by immunohistochemistry of retinal sections and dissociated photoreceptors from mice, which were stained using antibodies against FAM161A and antibodies against cilium markers. The function of FAM161A was further assessed in ciliated mammalian cell lines by expression of recombinant FAM161A with various fusion tags. The binary interaction between FAM161A and a collection of ciliary and ciliopathy-associated proteins was analyzed using a yeast two-hybrid assay. The results obtained with this technique were validated using independent protein-protein interaction assays (GST-pull downs, co-transfection and co-immunoprecipitation). Results: Native FAM161A localized at the connecting cilium of photoreceptor cells, as demonstrated by immunofluorescence in both dissociated photoreceptors and retinal sections of mice. More specifically, co-staining with markers for ciliary sub-structures (RPGRIP1L, Centrin, RP1, GT335) demonstrated that FAM161A decorated the basal body and the very apical part of the connecting cilium. Upon overexpression in ciliated cultured mammalian cells, FAM161A localized to the ciliary basal body. Yeast two-hybrid analysis of the binary interaction of FAM161A and an array of ciliary proteins revealed the direct interaction of FAM161A with three proteins of which the cognate genes are mutated in retinal ciliopathies. The confirmation of these interactions using different biochemical assays is currently in progress. Conclusions: FAM161A is a ciliary basal body protein of the photoreceptor connecting cilium, rendering the associated RP as a novel retinal ciliopathy. The confined expression of FAM161A in the retina and the direct interaction of FAM161A with other retinal ciliopathy-associated proteins may explain the retinal phenotype of this specific subset of mechanistically and phenotypically connected retinal disorders.
Resumo:
Inositol and its phosphorylated derivatives play a major role in brain function, either as osmolytes, second messengers or regulators of vesicle endo- and exocytosis. Here we describe the identification and functional characterization of a novel H(+)-myo- inositol co-transporter, HMIT, expressed predominantly in the brain. HMIT cDNA encodes a 618 amino acid polypeptide with 12 predicted transmembrane domains. Functional expression of HMIT in Xenopus oocytes showed that transport activity was specific for myo-inositol and related stereoisomers with a Michaelis-Menten constant of approximately 100 microM, and that transport activity was strongly stimulated by decreasing pH. Electrophysiological measurements revealed that transport was electrogenic with a maximal transport activity reached at pH 5.0. In rat brain membrane preparations, HMIT appeared as a 75-90 kDa protein that could be converted to a 67 kDa band upon enzymatic deglycosylation. Immunofluorescence microscopy analysis showed HMIT expression in glial cells and some neurons. These data provide the first characterization of a mammalian H(+)-coupled myo- inositol transporter. Predominant central expression of HMIT suggests that it has a key role in the control of myo-inositol brain metabolism.
Resumo:
Purpose: To examine the possible role of H+-activated acid-sensing ion channels (ASICs) in pain perception we characterized their expression in bladder dome biopsies of Bladder Pain Syndrome (BPS) patients and controls, in cultured human urothelium and in urothelial TEU-2 cells.Materials and Methods: Cold cut biopsies from the bladder dome were obtained in 8 asymptomatic controls and 28 patients with symptoms of BPS. ASIC expression was analyzed by QPCR and immunofluorescence. The channel function was measured by electrophysiology.Results: ASIC1a, ASIC2a and ASIC3 mRNAs were detected in human bladder. Similar amounts of ASIC1a and -3 were detected in detrusor smooth muscle, whereas in urothelium ASIC3 levels were higher than -1a. ASIC2a mRNA levels were lower than either -1a or -3 in both layers. ASIC currents were measured in TEU-2 cells and in primary cultures of human urothelium, and ASIC expression was confirmed by QPCR. Differentiation of TEU-2 cells caused an up-regulation of ASIC2a and ASIC3, and a down-regulation of ASIC1a mRNAs. BPS patients showed an up-regulation of ASIC2a and -3 mRNA, whereas ASIC1a remained unchanged. In contrast, the mRNA levels of TRPV1 were down-regulated during BPS. All differences were statistically significant (p<0.05)Conclusions: Several different ASIC subunits are expressed in human bladder and TEU-2 cells, where their levels are regulated during urothelial differentiation. An up-regulation of ASIC2a and -3 in BPS suggests their involvement in increased pain and hyperalgesia. A down-regulation of TRPV1 mRNA levels might indicate a different regulatory mechanism, controlling its expression in human bladder.