76 resultados para ITERATIVE ALGORITHMS
Resumo:
OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.
Resumo:
PURPOSE: To compare different techniques for positive contrast imaging of susceptibility markers with MRI for three-dimensional visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. MATERIALS AND METHODS: Six different positive contrast techniques are investigated for their ability to image at 3 Tesla a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. RESULTS: The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided, and strengths and weaknesses of the different approaches are discussed. CONCLUSION: The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data are now available.
Resumo:
INTRODUCTION: Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. METHODS: We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40 %/60 % with appropriate noise indices. The weighted volume CT dose index (CTDIvol), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. RESULTS: For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDIvol and DLP were lowered by up to 10.9 % (p < 0.001), 17.9 % (p = 0.005), 20.9 % (p < 0.001), and 21.7 % (p = 0.001), respectively, by using ASIR compared with FBP alone. Image quality and noise were similar for both FBP and ASIR. CONCLUSION: We recommend routine use of iterative reconstruction for neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality.
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
Purpose: Although several approaches have been already used to reduce radiation dose, CT doses are still among the high doses in radio-diagnostic. Recently, General Electric introduced a new imaging reconstruction technique, adaptive statistical iterative reconstruction (ASIR), allows to taking into account the statistical fluctuation of noise. The benefits of ASIR method were assessed through classic metrics and the evaluations of cardiac structures by radiologists. Methods and materials: A 64-row CT (MDCT) was employed. Catphan600 phantom acquisitions and 10 routine-dose CT examinations performed at 80 kVp were reconstructed with FBP and with 50% of ASIR. Six radiologists then assessed the visibility of main cardiac structures using the visual grading analysis (VGA) method. Results: On phantoms, for a constant value of SD (25 HU), CTDIvol is divided by 2 (8 mGy to 4 mGy) when 50% of ASIR is used. At constant CTDIvol, MTF medium frequencies were also significantly improved. First results indicated that clinical images reconstructed with ASIR had a better overall image quality compared with conventional reconstruction. This means that at constant image quality the radiation dose can be strongly reduced. Conclusion: The first results of this study shown that the ASIR method improves the image quality on phantoms by decreasing noise and improving resolution with respect to the classical one. Moreover, the benefit obtained is higher at lower doses. In clinical environment, a dose reduction can still be expected on 80 kVp low dose pediatric protocols using 50% of iterative reconstruction. Best ASIR percentage as a function of cardiac structures and detailed protocols will be presented for cardiac examinations.
Resumo:
OBJECTIVE: To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). MATERIALS AND METHODS: Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. RESULTS: For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. CONCLUSION: LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %.
Resumo:
BACKGROUND: The potential effects of ionizing radiation are of particular concern in children. The model-based iterative reconstruction VEO(TM) is a technique commercialized to improve image quality and reduce noise compared with the filtered back-projection (FBP) method. OBJECTIVE: To evaluate the potential of VEO(TM) on diagnostic image quality and dose reduction in pediatric chest CT examinations. MATERIALS AND METHODS: Twenty children (mean 11.4 years) with cystic fibrosis underwent either a standard CT or a moderately reduced-dose CT plus a minimum-dose CT performed at 100 kVp. Reduced-dose CT examinations consisted of two consecutive acquisitions: one moderately reduced-dose CT with increased noise index (NI = 70) and one minimum-dose CT at CTDIvol 0.14 mGy. Standard CTs were reconstructed using the FBP method while low-dose CTs were reconstructed using FBP and VEO. Two senior radiologists evaluated diagnostic image quality independently by scoring anatomical structures using a four-point scale (1 = excellent, 2 = clear, 3 = diminished, 4 = non-diagnostic). Standard deviation (SD) and signal-to-noise ratio (SNR) were also computed. RESULTS: At moderately reduced doses, VEO images had significantly lower SD (P < 0.001) and higher SNR (P < 0.05) in comparison to filtered back-projection images. Further improvements were obtained at minimum-dose CT. The best diagnostic image quality was obtained with VEO at minimum-dose CT for the small structures (subpleural vessels and lung fissures) (P < 0.001). The potential for dose reduction was dependent on the diagnostic task because of the modification of the image texture produced by this reconstruction. CONCLUSIONS: At minimum-dose CT, VEO enables important dose reduction depending on the clinical indication and makes visible certain small structures that were not perceptible with filtered back-projection.
Resumo:
BACKGROUND: Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. METHODOLOGY/PRINCIPAL FINDINGS: Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9-92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4-8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. CONCLUSIONS/SIGNIFICANCE: In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere.