74 resultados para ISOLATED RAT MUSCLE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats. DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10-100 nM) of PMA. MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively. RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCalpha from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10-100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats. CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCalpha activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Isolated complex III deficiencies are caused by mutations in the mitochondrial CytB gene, in the BCS1L gene coding for a CIII assembly factor and in the UQCRQ gene that codes for the ubiquinone binding protein of complex III. Objective: Description of clinical features, mitochondrial function and molecular genetic analysis in a patient with an isolated complex III deficiency. Patient: A 17 year old boy, born to consanguineous parents who presented with hypoglycemia, glycosuria, deafness, growth retardation, Fanconi Syndrome and severe lactic acidosis in the neonatal period. Methods: Activities and assembly of OXPHOS complexes were investigated spectrophotometrically and by BN-PAGE. mt-DNAwas screened for deletions. Cytochrome b (CytB) and the BCS1L gene were sequenced. Results: Isolated complex III deficiency was detected in the patient's skeletal muscle. Using BN-PAGE blotting a complex III of lower molecular weight was detected. Staining the 2D reveals a missing subunit. No mutation was detected in the mitochondrial CytB gene. Sequence analysis of BCS1L revealed a novel homozygous point mutation p.M48V. Conclusion: The patients decreased complex III activity is most likely caused by incomplete assembly of complex III due to the homozygous p. M48V mutation in the BCS1L gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The major side effects of the immunosuppressive drug cyclosporin A (CsA) are hypertension and nephrotoxicity. It is likely that both are caused by local vasoconstriction. 2. We have shown previously that 20 h treatment of rat vascular smooth muscle cells (VSMC) with therapeutically relevant CsA concentrations increased the cellular response to [Arg8]vasopressin (AVP) by increasing about 2 fold the number of vasopressin receptors. 3. Displacement experiments using a specific antagonist of the vasopressin V1A receptor (V1AR) showed that the vasopressin binding sites present in VSMC were exclusively receptors of the V1A subtype. 4. Receptor internalization studies revealed that CsA (10(-6) M) did not significantly alter AVP receptor trafficking. 5. V1AR mRNA was increased by CsA, as measured by quantitative polymerase chain reaction. Time-course studies indicated that the increase in mRNA preceded cell surface expression of the receptor, as measured by hormone binding. 6. A direct effect of CsA on the V1AR promoter was investigated using VSMC transfected with a V1AR promoter-luciferase reporter construct. Surprisingly, CsA did not increase, but rather slightly reduced V1AR promoter activity. This effect was independent of the cyclophilin-calcineurin pathway. 7. Measurement of V1AR mRNA decay in the presence of the transcription inhibitor actinomycin D revealed that CsA increased the half-life of V1AR mRNA about 2 fold. 8. In conclusion, CsA increased the response of VSMC to AVP by upregulating V1AR expression through stabilization of its mRNA. This could be a key mechanism in enhanced vascular responsiveness induced by CsA, causing both hypertension and, via renal vasoconstriction, reduced glomerular filtration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: The antihypertensive effect of renal denervation in hypertensive patients is partially explained by increased tubular natriuresis. To study the possible contribution of the kallikrein-kinin system (KKS) to this natriuretic effect in rats, we measured kallikrein activity (KA) and bradykinin concentrations (BK) in plasma and tissues. METHODS: To measure KA, we adapted and validated an enzymatic assay that cleaves para-nitroaniline (pNA) from the tripeptide H-D-Pro-Phe-Arg-pNA. The coefficients of variation (CV) within- and between-assays were less than 8% for plasma and tissue KA (plasma n=6 and 13; tissue n=4). Linear results for serially diluted samples confirmed the assay specificity. Tissue BK determinations were based on an established assay for plasma BK: tissue was homogenized and kinins extracted in ethanol, and BK was isolated by high-performance (HPLC) liquid chromatography and quantitated by radioimmunassay. Within- and between-assay CV for plasma BK were 18% (n=8 and n=35, respectively) and for BK in various tissues less than 16% (n=5-8). RESULTS: In male Wistar rats (n=3), plasma BK was 8.2±6.6 fmol/mL (mean±SD), and tissue BK (fmol/g) in 14 tested organs varied between brain (14±3) and submaxillary gland (521±315). Six days after left-sided unilateral renal denervation, left renal tissue BK (89±9) was not different from right renal BK (75±23). Similarly, KA was comparable in the two kidneys (left 18.0±1.5, right 15.8±1.4μkat/g). CONCLUSION: Any possible effect of unilateral renal denervation on the kidney's KKS would have to be bilateral.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GLUT2 expression is strongly decreased in glucose-unresponsive pancreatic beta cells of diabetic rodents. This decreased expression is due to circulating factors distinct from insulin or glucose. Here we evaluated the effect of palmitic acid and the synthetic glucocorticoid dexamethasone on GLUT2 expression by in vitro cultured rat pancreatic islets. Palmitic acid induced a 40% decrease in GLUT2 mRNA levels with, however, no consistent effect on protein expression. Dexamethasone, in contrast, had no effect on GLUT2 mRNA, but decreased GLUT2 protein by about 65%. The effect of dexamethasone was more pronounced at high glucose concentrations and was inhibited by the glucocorticoid antagonist RU-486. Biosynthetic labeling experiments revealed that GLUT2 translation rate was only minimally affected by dexamethasone, but that its half-life was decreased by 50%, indicating that glucocorticoids activated a posttranslational degradation mechanism. This degradation mechanism was not affecting all membrane proteins, since the alpha subunit of the Na+/K+-ATPase was unaffected. Glucose-induced insulin secretion was strongly decreased by treatment with palmitic acid and/or dexamethasone. The insulin content was decreased ( approximately 55 percent) in the presence of palmitic acid, but increased ( approximately 180%) in the presence of dexamethasone. We conclude that a combination of elevated fatty acids and glucocorticoids can induce two common features observed in diabetic beta cells, decreased GLUT2 expression, and loss of glucose-induced insulin secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the regulation of connexin expression by fluid pressure, we have studied the effects of elevated transmural urine pressure on Connexin43 (Cx43) and Cx26. We chose to focus on these two proteins out of the five connexins (Cx26, 43, 40, 37, and 45) which we found by RT-PCR to be expressed in the rat bladder, since in situ hybridization and immunofluorescence showed that Cx43 is the predominant connexin expressed by smooth muscle cells (SMC), whereas Cx26 is abundantly expressed only in the latter cell type. To evaluate whether these connexins are affected by changes in transmural urine pressure, we used a rat model of bladder outlet obstruction, in which a ligature is placed around the urethra. Under conditions of increased fluid pressure due to urine retention, we observed that the expression of both Cx43 and Cx26 increased at both transcript and protein levels, reaching a maximum 7-9 h after the ligature. Further analysis revealed that these changes were accounted for by a fourfold increase in Cx43 mRNA of SMC but not urothelial cell and by a fivefold increase in Cx26 mRNA of urothelium. Scrape-loading of propidium iodide showed that the latter change was paralleled by a twofold increase in coupling between urothelial cells. The data show that Cx43 and Cx26 are differentially regulated during bladder outlet obstruction and contribute to the response of the bladder wall to increased voiding pressure, possibly to control its elasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proper function of the wall of bladder requires gap junctional communication for coordinating the responses of smooth muscle (SMC) and urothelial cells exposed to urine pressure. In the rat bladder, Cx43 is expressed by SMC and urothelial cells, whereas Cx26 expression is restricted to the epithelium. We used a model of bladder outlet obstruction, in which a ligature is placed around the urethra to increase voiding pressure. Increased fluid pressure was associated with increased Cx43 and Cx26 mRNA expression and with the activation of a signaling cascade including the transcription factor c-Jun, which is a component of the AP-1 complex. The signaling pathway of the c-Jun NH2 terminal kinase (JNK) requires the presence of the scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1). Under stress conditions resulting from urine retention, we have found a reduced content of IB1/JIP-1 in urothelial cells, which in turn induced a drastic increase of JNK and AP-1 binding activities. The stress-induced activation of JNK was prevented by overexpressing IB1/JIP-1, using a viral gene transfer approach, a condition which also resulted in a decrease in Cx26 mRNA. The data show that: 1) mechanical stress of urothelial cells activates in vivo JNK, as a consequence of a regulated expression of IB1/JIP-1 and 2) that urothelial Cx26 may be directly regulated by the AP-1 complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Functional muscle recovery after peripheral nerve injury is far from optimal, partly due to atrophy of the muscle arising from prolonged denervation. We hypothesized that injecting regenerative cells into denervated muscle would reduce this atrophy. METHODS: A rat sciatic nerve lesion was performed, and Schwann cells or adipose-derived stem cells, untreated or induced to a "Schwann-cell-like" phenotype (dASC), were injected into the gastrocnemius muscle. Nerves were either repaired immediately or capped to prevent muscle reinnervation. One month later, functionality was measured using a walking track test, and muscle atrophy was assessed by examining muscle weight and histology. RESULTS: Schwann cells and dASC groups showed significantly better scores on functional tests when compared with injections of growth medium alone. Muscle weight and histology were also significantly improved in these groups. CONCLUSION: Cell injections may reduce muscle atrophy and could benefit nerve injury patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of anal anomalies among 4,618,840 births recorded in 33 EUROCAT registries between 1980 and 1994 was 4.05 per 10,000 births. Of the 1,846 recorded cases, 672 (36.4%) were isolated anal anomalies while 1,174 (63.6%) occurred together with other anomalies. Only isolated anal anomalies were analyzed in this study: 75.5% were atresias, 10.1% of which were above and 89.9% were below the level of the levator ani muscle. Fistula occurred in 53% of supralevator and 37% of infralevator atresia. Other anal anomalies were ectopic anus (3.4%), congenital anal fistula (14.7%), and persistent cloaca (0.9%). There was a predominance of males in anal atresia without fistula (male to female (M:F) ratio was 6.7 for supralevator and 2.3 for infralevator atresia), but no significant sex difference in atresias with fistula. There was a predominance of females in ectopic anus and congenital anal fistula (M:F = 0.11 and 0.36 respectively). High frequencies of fetal deaths were recorded in supralevator atresia without fistula (8.3%) and in persistent cloaca (11.1%). Mean gestational length and mean birth weights were reduced for persistent cloaca but were within normal limits for other isolated anal anomalies. Odds ratios (ORs) for mothers above 35 years were increased for supralevator atresia without fistula, supralevator atresia with fistula, and congenital anal fistula. ORs for mothers below 30 years were slightly increased for supralevator atresia without fistula and decreased for persistent cloaca. There were marked differences in prevalence and distribution of anal anomalies among the EUROCAT registries. The results indicated that there are epidemiological differences among the various types of anal anomalies which might reflect different embryological origins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Plasmid electrotransfer in the ciliary muscle allows the sustained release of therapeutic proteins within the eye. The aim of this study was to evaluate whether the ocular production of TNF-alpha soluble receptor, using this nonviral gene therapy method, could have a beneficial local effect in a model of experimental autoimmune uveoretinitis (EAU). METHODS: Injection of a plasmid encoding a TNF-alpha p55 receptor (30 microg) in the ciliary muscle, combined with electrotransfer (200 V/cm), was carried out in Lewis rat eyes 4 days before the induction of EAU by S-antigen. Control eyes received naked plasmid electrotransfer or simple injection of the therapeutic plasmid. The disease was evaluated clinically and histologically. Cytokines and chemokines were analyzed in the ocular media by multiplex assay performed 15 and 21 days after immunization. RESULTS: Ocular TNF-alpha blockade, resulting from the local secretion of soluble receptors, was associated with delayed and significantly less severe uveitis, together with a reduction of the retinal damages. Compared with the controls, treated eyes showed significantly lower levels of IL-1beta and MCP1, higher levels of IL-13 and IL-4, and reduced NOS-2 expression in infiltrating cells. Treatment did not influence TNF-alpha levels in inguinal lymph nodes. CONCLUSIONS: Taken together, these results indicate that local immunomodulation was achieved and that no systemic adverse effects of TNF-alpha blockade observed after systemic injection of TNF-alpha inhibitors should be expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to study the distribution and cellular localization of GLUT2 in the rat brain by light and electron microscopic immunohistochemistry, whereas our ultrastructural observations will be reported in a second paper. Confirming previous results, we show that GLUT2-immunoreactive profiles are present throughout the brain, especially in the limbic areas and related nuclei, whereas they appear most concentrated in the ventral and medial regions close to the midline. Using cresyl violet counterstaining and double immunohistochemical staining for glial or neuronal markers (GFAp, CAII and NeuN), we show that two limited populations of oligodendrocytes and astrocytes cell bodies and processes are immunoreactive for GLUT2, whereas a cross-reaction with GLUT1 cannot be ruled out. In addition, we report that the nerve cell bodies clearly immunostained for GLUT2 were scarce (although numerous in the dentate gyrus granular layer in particular), whereas the periphery of numerous nerve cells appeared labeled for this transporter. The latter were clustered in the dorsal endopiriform nucleus and neighboring temporal and perirhinal cortex, in the dorsal amygdaloid region, and in the paraventricular and reuniens thalamic nuclei, whereas they were only a few in the hypothalamus. Moreover, a group of GLUT2-immunoreactive nerve cell bodies was localized in the dorsal medulla oblongata while some large multipolar nerve cell bodies peripherally labeled for GLUT2 were scattered in the caudal ventral reticular formation. This anatomical localization of GLUT2 appears characteristic and different from that reported for the neuronal transporter GLUT3 and GLUT4. Indeed, the possibility that GLUT2 may be localized in the sub-plasmalemnal region of neurones and/or in afferent nerve fibres remains to be confirmed by ultrastructural observations. Because of the neuronal localization of GLUT2, and of its distribution relatively similar to glucokinase, it may be hypothesized that this transporter is, at least partially, involved in cerebral glucose sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different interactions have been described between glucocorticoids and the product of the ob gene leptin. Leptin can inhibit the activation of the hypothalamo-pituitary-adrenal axis by stressful stimuli, whereas adrenal glucocorticoids stimulate leptin production by the adipocyte. The present study was designed to investigate the potential direct effects of leptin to modulate glucocorticoid production by the adrenal. Human adrenal glands from kidney transplant donors were dissociated, and isolated primary cells were studied in vitro. These cells were preincubated with recombinant leptin (10(-10)-10(-7) M) for 6 or 24 h, and basal or ACTH-stimulated cortisol secretion was subsequently measured. Basal cortisol secretion was unaffected by leptin, but a significant and dose-dependent inhibition of ACTH-stimulated cortisol secretion was observed [down by 29 +/- 0.1% of controls with the highest leptin dose, P &lt; 0.01 vs. CT (unrelated positive control)]. This effect of leptin was also observed in rat primary adrenocortical cells, where leptin inhibited stimulated corticosterone secretion in a dose-dependent manner (down by 46 +/- 0.1% of controls with the highest leptin dose, P &lt; 0.001 vs. CT). These effects of leptin in adrenal cells are likely mediated by the long isoform of the leptin receptor (OB-R), because its transcript was found to be expressed in the adrenal tissue and leptin had no inhibitory effect in adrenal glands obtained from db/db mice. Therefore, leptin inhibits directly stimulated cortisol secretion from human and rat adrenal glands, and this may represent an important mechanism to modulate glucocorticoid levels in various metabolic states.