108 resultados para Hypertrophy Fibrosis
Resumo:
Inhaled therapies play a significant role in the management of cystic fibrosis patients. Mucolytic and airway-rehydrating agents improve mucociliary clearance and respiratory functional status. Nebulized antibiotherapy achieve high local concentration, while reducing systemic toxicity. Tolerance to inhaled treatments is good excepting frequent bronchoconstriction which can usually be prevented by prior administration of beta2-mimetics. The majority of treatments are only available in liquid formulations. Thus, nebulization is the most frequently used inhalation mode. Vibrating-mesh nebulizers have significantly reduced inhalation time.
Resumo:
Although generally considered as a slowly evolving disease, idiopathic pulmonary fibrosis (IPF) is also characterized by episods of rapid deterioration with worsening of dyspnea and hypoxemia, and new ground glass opacities at imaging. These events called "acute exacerbations" (AE) are responsible for half of all deaths in IPF. Pathophysiologic mechanisms of AE are poorly understood. The effectiveness of corticosteroids and immunosuppressive agents appears limited. The mortality of AE is 60-70%. Preventing or controlling AE could improve the overall prognosis of IPF. AE also exist in other interstitial lung diseases.
Resumo:
We present the case of a 67-year-old male patient with mediastinal and retroperitoneal fibrosis. In Europe, this is a rare disease. Treatment was established to prevent complications due to strictures or compressions. Because of his diabetes, a therapy of low-dose prednisone combined with mycophenolate mofetil, known as steroid sparing agent, was applied. As a result, the radiological follow-up showed a marked decrease in the mediastinal and retroperitoneal masses.
Resumo:
BACKGROUND: Pulmonary vascular diseases are increasingly recognised as important clinical conditions. Pulmonary hypertension associated with a range of aetiologies is difficult to treat and associated with progressive morbidity and mortality. Current therapies for pulmonary hypertension include phosphodiesterase type 5 inhibitors, endothelin receptor antagonists, or prostacyclin mimetics. However, none of these provide a cure and the clinical benefits of these drugs individually decline over time. There is, therefore, an urgent need to identify new treatment strategies for pulmonary hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the PPARbeta/delta agonist GW0742 induces vasorelaxation in systemic and pulmonary vessels. Using tissue from genetically modified mice, we show that the dilator effects of GW0742 are independent of the target receptor PPARbeta/delta or cell surface prostacyclin (IP) receptors. In aortic tissue, vascular relaxant effects of GW0742 were not associated with increases in cGMP, cAMP or hyperpolarisation, but were attributed to inhibition of RhoA activity. In a rat model of hypoxia-induced pulmonary hypertension, daily oral dosing of animals with GW0742 (30 mg/kg) for 3 weeks significantly reduced the associated right heart hypertrophy and right ventricular systolic pressure. GW0742 had no effect on vascular remodelling induced by hypoxia in this model. CONCLUSIONS/SIGNIFICANCE: These observations are the first to show a therapeutic benefit of 'PPARbeta/delta' agonists in experimental pulmonary arterial hypertension and provide pre-clinical evidence to favour clinical trials in man.
Resumo:
Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.
Resumo:
Left ventricular hypertrophy (LVH) is an early complication of hypertension. To a certain degree, this process counteracts the parietal stress induced by high blood pressure. Genetic factors, obesity, high salt diet and different growth factors, notably angiotensin II and noradrenaline, can also predispose to hypertrophic cardiomyopathy. Left ventricular mass is increased on echocardiography in about 20% of hypertensive subjects. LVH is initially associated with a change in myocardial diastolic function and later with abnormal systolic function. It is a major risk factor, a cause of cardiac failure, reduction in coronary reserve and of ventricular arrhythmias. Treatment of hypertension is associated with regression of LVH and preservation or improvement in myocardial diastolic and systolic functions. The decrease in left ventricular mass could reduce the incidence of cardiovascular complications in hypertension.
Resumo:
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.
Resumo:
Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.
Resumo:
Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.
Resumo:
In response to stress or injury the heart undergoes a pathological remodeling process, associated with hypertrophy, cardiomyocyte death and fibrosis, that ultimately causes cardiac dysfunction and heart failure. It has become increasingly clear that signaling events associated with these pathological cardiac remodeling events are regulated by scaffolding and anchoring proteins, which allow coordination of pathological signals in space and time. A-kinase anchoring proteins (AKAPs) constitute a family of functionally related proteins that organize multiprotein signaling complexes that tether the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to ensure integration and processing of multiple signaling pathways. This review will discuss the role of AKAPs in the cardiac response to stress. Particular emphasis will be given to the adaptative process associated with cardiac hypoxia as well as the remodeling events linked to cardiac hypertrophy and heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
Background and Aims: Genetic polymorphisms near IL28Bhave been associated with spontaneous and treatment-inducedclearance of hepatitis C virus (HCV). This is believed to proceed viathe appropriate activation of innate and adaptive immune responsestargeting infected hepatocytes. Intrahepatic inflammation is thereflection of the host cell immune response, but its relationshipwith IL28B polymorphisms has yet to be fully appreciated.Methods: We analyzed the association of IL28B polymorphismswith Metavir activity (≥1) and fibrosis scores (≥2) in 1114 HCVinfectedCaucasian patients enrolled in the Swiss Hepatitis C CohortStudy (629, 127, 268 and 110 infected with HCV genotype 1, 2, 3and 4, respectively). In a subgroup of 915 patients with an estimateddate of infection, the association between IL28B polymorphismsand fibrosis progression rate (FPR > median) was assessed. Singlenucleotide polymorphisms (SNPs) of interest were extracted froma dataset generated in a genome-wide association study and/orgenotyped by TaqMan assay. Associations of alleles with differentdegrees of activity and fibrosis were evaluated using an additivemodel of inheritance by multivariate logistic regression, accountingfor all relevant covariates.Results: The rare G allele at marker rs8099917 was associated withlower activity (P = 0.008) and fibrosis (P = 0.01), as well as slower FPR(P = 0.02). Most striking associations were observed among patientsinfected with non-1 genotypes (P = 0.002 for activity, P = 0.002 forfibrosis and P = 0.005 for FPR). In genotype 1-infected patients, theassociation with activity was observed only in the recessive model(P = 0.04), whereas other associations were not significant (P = 0.7for fibrosis and P = 0.4 for FPR).Conclusions: In chronic hepatitis C, IL28B polymorphisms linkedwith a poor virological response to therapy are also associated withreduced intrahepatic necroinflammation and slower liver diseaseprogression. These observations underscore the role played by thehost immune response in clearing HCV, especially in patients withHCV genotypes non-1.
Resumo:
After a relatively normal childhood, people suffering from cystic fibrosis reach a stage where they are progressively confronted with increasingly crippling functional limitations. Some of them nonetheless regularly undertake physical and/or sporting activity. It is then interesting to examine the process of commitment to a practice that is based on the idea of progress and often exceptional performance by the body but which, for these people, makes the decline of their physical capacities particularly salient. The qualitative survey combines participant observation with 35 semi-directive interviews with sportsmen and women with cystic fibrosis. Their commitment to sport, constructed by/with the family is initially first aimed maintaining a form of control over their identity but progressively becomes a means of controlling the illness trajectory. Lung transplant, when possible, relaunches the practice in relation to its initial interests.
Resumo:
RATIONALE: The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. OBJECTIVE: The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. METHODS AND RESULTS: Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. CONCLUSIONS: Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.
Resumo:
Microcirculation (2010) 17, 69-78. doi: 10.1111/j.1549-8719.2010.00002.x Abstract Background: This study was designed to explore the effect of transient inducible nitric oxide synthase (iNOS) overexpression via cationic liposome-mediated gene transfer on cardiac function, fibrosis, and microvascular perfusion in a porcine model of chronic ischemia. Methods and Results: Chronic myocardial ischemia was induced using a minimally invasive model in 23 landrace pigs. Upon demonstration of heart failure, 10 animals were treated with liposome-mediated iNOS-gene-transfer by local intramyocardial injection and 13 animals received a sham procedure to serve as control. The efficacy of this iNOS-gene-transfer was demonstrated for up to 7 days by reverse transcriptase-polymerase chain reaction in preliminary studies. Four weeks after iNOS transfer, magnetic resonance imaging showed no effect of iNOS overexpression on cardiac contractility at rest and during dobutamine stress (resting ejection fraction: control 27%, iNOS 26%; P = ns). Late enhancement, infarct size, and the amount of fibrosis were similar between groups. Although perfusion and perfusion reserve in response to adenosine and dobutamine were not significantly modified by iNOS-transfer, both vessel number and diameter were significantly increased in the ischemic area in the iNOS-treated group versus control (point score: control 15.3, iNOS 34.7; P < 0.05). Conclusions: Our findings demonstrate that transient iNOS overexpression does not aggravate cardiac dysfunction or postischemic fibrosis, while potentially contributing to neovascularization in the chronically ischemic heart.