101 resultados para Heart failure, Management, Access, Quality
Resumo:
Background: Mammalian target of rapamycin (mTOR), a central regulator of cell growth, is found in two structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC)1 and mTORC2. The specific roles of each of these branches of mTOR signaling have not been dissected in the adult heart. In the present study, we aimed to bring new insights into the function of cardiac mTORC1-mediated signaling in physiological as well as pathological situations.Methods: We generated mice homozygous for loxP-flanked raptor and positive for the tamoxifen-inducible Cre recombinase (MerCreMer) under control of the α- myosin heavy chain promoter. The raptor gene encodes an essential component of mTORC1. Gene ablation was induced at the age of 10-12 weeks, and two weeks later the raptor cardiac-knockout (raptor-cKO) mice started voluntary cagewheel exercise or were subjected to transverse aortic constriction (TAC) to induce pressure overload.Results: In sedentary raptor-cKO mice, ejection fractions gradually decreased, resulting in significantly reduced values at 38 days (P < 0.001). Raptor-cKO mice started to die during the fifth week after the last tamoxifen injection. At that time, the mortality rate was 36% in sedentary (n = 11) and 64% in exercising (n = 14) mice. TAC-induced pressure overload resulted in severe cardiac dysfunction already at earlier timepoints. Thus, at 7-9 days after surgery, ejection fraction and fractional shortening values were 22.3% vs 43.5% and 10.2% vs 21.5% in raptor-cKO vs wild-type mice, respectively. This was accompanied by significant reductions of ventricular wall and septal thickness as well as an increase in left ventricular internal diameter. Moreover, ventricular weight to tibial length ratios were increased in wild-type, but not in the raptor-cKO TAC mice. Together, this shows that raptor-cKO mice rapidly developed dilated cardiomyopathy without going through a phase of adaptive hypertrophy. Expression of ANP and β-MHC was induced in all raptor-cKO mice irrespective of the cardiac load conditions. Consistent with reduced mTORC1 activity, phosphorylation of ribosomal S6 kinase and 4E-BP1 was blunted, indicating reduced protein synthesis. Moreover, expression of multiple genes involved in the regulation of energy metabolism was altered, and followed by a shift from fatty acid to glucose oxidation.Conclusion: Our study suggests that mTORC1 coordinates protein and energy metabolic pathways in the heart. Moreover, we demonstrate that raptor is essential for the cardiac adaptation to increased workload and importantly, also for normal physiological cardiac function.
Resumo:
Context: Subclinical thyroid dysfunction is common in older people. However, its clinical importance is uncertain. Objective: Our objective was to determine the extent to which subclinical hyperthyroidism and hypothyroidism influence the risk of heart failure and cardiovascular diseases in older people. Setting and Design: The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) is an prospective cohort study. Patients: Patients included men and women aged 70-82 yr (n = 5316) with known cardiovascular risk factors or previous cardiovascular disease. Main Outcome Measures: Incidence rate of heart failure hospitalization, atrial fibrillation, and cardiovascular events and mortality according to baseline thyroid status were evaluated. Euthyroid participants (TSH =0.45-4.5 mIU/liter) were compared with those with subclinical hyperthyroidism (TSH <0.45 mIU/liter) and those with subclinical hypothyroidism (TSH ≥4.5 mIU/liter, both with normal free T(4)). Results: Subclinical hyperthyroidism was present in 71 participants and subclinical hypothyroidism in 199 participants. Over 3.2 yr follow-up, the rate of heart failure was higher for subclinical hyperthyroidism compared with euthyroidism [age- and sex-adjusted hazard ratio (HR) = 2.93, 95% confidence interval (CI) = 1.37-6.24, P = 0.005; multivariate-adjusted HR = 3.27, 95% CI = 1.52-7.02, P = 0.002). Subclinical hypothyroidism (only at threshold >10 mIU/liter) was associated with heart failure (age- and sex-adjusted HR = 3.01, 95% CI = 1.12-8.11, P = 0.029; multivariate HR = 2.28, 95% CI = 0.84-6.23). There were no strong evidence of an association between subclinical thyroid dysfunction and cardiovascular events or mortality, except in those with TSH below 0.1 or over 10 mIU/liter and not taking pravastatin. Conclusion: Older people at high cardiovascular risk with low or very high TSH along with normal free T(4) appear at increased risk of incident heart failure.
Resumo:
BACKGROUND: The impact of abnormal spirometric findings on risk for incident heart failure among older adults without clinically apparent lung disease is not well elucidated.METHODS: We evaluated the association of baseline lung function with incident heart failure, defined as first hospitalization for heart failure, in 2125 participants of the community-based Health, Aging, and Body Composition (Health ABC) Study (age, 73.6 +/- 2.9 years; 50.5% men; 62.3% white; 37.7% black) without prevalent lung disease or heart failure. Abnormal lung function was defined either as forced vital capacity (FVC) or forced expiratory volume in 1(st) second (FEV1) to FVC ratio below lower limit of normal. Percent predicted FVC and FEV1 also were assessed as continuous variables.RESULTS: During follow-up (median, 9.4 years), heart failure developed in 68 of 350 (19.4%) participants with abnormal baseline lung function, as compared with 172 of 1775 (9.7%) participants with normal lung function (hazard ratio [HR] 2.31; 95% confidence interval [CI], 1.74-3.07; P <.001). This increased risk persisted after adjusting for previously identified heart failure risk factors in the Health ABC Study, body mass index, incident coronary heart disease, and inflammatory markers (HR 1.83; 95% CI, 1.33-2.50; P <.001). Percent predicted (%) FVC and FEV 1 had a linear association with heart failure risk (HR 1.21; 95% CI, 1.11-1.32 and 1.18; 95% CI, 1.10-1.26, per 10% lower % FVC and % FEV1, respectively; both P <.001 in fully adjusted models). Findings were consistent in sex and race subgroups and for heart failure with preserved or reduced ejection fraction.CONCLUSIONS: Abnormal spirometric findings in older adults without clinical lung disease are associated with increased heart failure risk. (C) 2011 Elsevier Inc. All rights reserved. The American Journal of Medicine (2011) 124, 334-341
Resumo:
BACKGROUND: Recent data suggest that beta-blockers can be beneficial in subgroups of patients with chronic heart failure (CHF). For metoprolol and carvedilol, an increase in ejection fraction has been shown and favorable effects on the myocardial remodeling process have been reported in some studies. We examined the effects of bisoprolol fumarate on exercise capacity and left ventricular volume with magnetic resonance imaging (MRI) and applied a novel high-resolution MRI tagging technique to determine myocardial rotation and relaxation velocity. METHODS: Twenty-eight patients (mean age, 57 +/- 11 years; mean ejection fraction, 26 +/- 6%) were randomized to bisoprolol fumarate (n = 13) or to placebo therapy (n = 15). The dosage of the drugs was titrated to match that of the the Cardiac Insufficiency Bisoprolol Study protocol. Hemodynamic and gas exchange responses to exercise, MRI measurements of left ventricular end-systolic and end-diastolic volumes and ejection fraction, and left ventricular rotation and relaxation velocities were measured before the administration of the drug and 6 and 12 months later. RESULTS: After 1 year, heart rate was reduced in the bisoprolol fumarate group both at rest (81 +/- 12 before therapy versus 61 +/- 11 after therapy; P <.01) and peak exercise (144 +/- 20 before therapy versus 127 +/- 17 after therapy; P <.01), which indicated a reduction in sympathetic drive. No differences were observed in heart rate responses in the placebo group. No differences were observed within or between groups in peak oxygen uptake, although work rate achieved was higher (117.9 +/- 36 watts versus 146.1 +/- 33 watts; P <.05) and exercise time tended to be higher (9.1 +/- 1.7 minutes versus 11.4 +/- 2.8 minutes; P =.06) in the bisoprolol fumarate group. A trend for a reduction in left ventricular end-diastolic volume (-54 mL) and left ventricular end-systolic volume (-62 mL) in the bisoprolol fumarate group occurred after 1 year. Ejection fraction was higher in the bisoprolol fumarate group (25.0 +/- 7 versus 36.2 +/- 9%; P <.05), and the placebo group remained unchanged. Most changes in volume and ejection fraction occurred during the latter 6 months of treatment. With myocardial tagging, insignificant reductions in left ventricular rotation velocity were observed in both groups, whereas relaxation velocity was reduced only after bisoprolol fumarate therapy (by 39%; P <.05). CONCLUSION: One year of bisoprolol fumarate therapy resulted in an improvement in exercise capacity, showed trends for reductions in end-diastolic and end-systolic volumes, increased ejection fraction, and significantly reduced relaxation velocity. Although these results generally confirm the beneficial effects of beta-blockade in patients with chronic heart failure, they show differential effects on systolic and diastolic function.
Resumo:
We report a case of neonatal lupus erythematosus (NLE) with congenital heart block and severe myocardial failure, which was followed from the 25th week of gestation because of fetal bradycardia. The child was delivered at the 37th week of gestation by elective cesarean section because of echocardiographically documented heart enlargement, pericardial effusion and moderate insufficiency of the mitral and tricuspid valves. In spite of immediate pacing, intubation and supportive treatment, the newborn developed progressive heart failure. Echocardiography showed endocarditis of the mitral valve and diffuse myocarditis. The heart failure resolved under steroid treatment. Our experience supports the early use of steroids in treating myocarditis due to NLE. Intrauterine steroid treatment in the presence of fetal hydrops and congenital heart block is discussed.
Resumo:
Unless effective preventive strategies are implemented, aging of the population will result in a significant worsening of the heart failure (HF) epidemic. Few data exist on whether baseline electrocardiographic (ECG) abnormalities can refine risk prediction for HF. METHODS: We examined a prospective cohort of 2,915 participants aged 70 to 79 years without preexisting HF, enrolled between April 1997 and June 1998 in the Health, Aging, and Body Composition (Health ABC) study. Minnesota Code was used to define major and minor ECG abnormalities at baseline and at year 4 follow-up. Using Cox models, we assessed (1) the association between ECG abnormalities and incident HF and (2) the incremental value of adding ECG to the Health ABC HF Risk Score using the net reclassification index. RESULTS: At baseline, 380 participants (13.0%) had minor, and 620 (21.3%) had major ECG abnormalities. During a median follow-up of 11.4 years, 485 participants (16.6%) developed incident HF. After adjusting for the Health ABC HF Risk Score variables, the hazard ratio (HR) was 1.27 (95% CI 0.96-1.68) for minor and 1.99 (95% CI 1.61-2.44) for major ECG abnormalities. At year 4, 263 participants developed new and 549 had persistent abnormalities; both were associated with increased subsequent HF risk (HR 1.94, 95% CI 1.38-2.72 for new and HR 2.35, 95% CI 1.82-3.02 for persistent ECG abnormalities). Baseline ECG correctly reclassified 10.5% of patients with HF events, 0.8% of those without HF events, and 1.4% of the overall population. The net reclassification index across the Health ABC HF risk categories was 0.11 (95% CI 0.03-0.19). CONCLUSIONS: Among older adults, baseline and new ECG abnormalities are independently associated with increased risk of HF. The contribution of ECG screening for targeted prevention of HF should be evaluated in clinical trials.
Resumo:
BACKGROUND AND OBJECTIVES: Sudden cardiac death (SCD) is a severe burden of modern medicine. Aldosterone antagonist is publicized as effective in reducing mortality in patients with heart failure (HF) or post myocardial infarction (MI). Our study aimed to assess the efficacy of AAs on mortality including SCD, hospitalization admission and several common adverse effects. METHODS: We searched Embase, PubMed, Web of Science, Cochrane library and clinicaltrial.gov for randomized controlled trials (RCTs) assigning AAs in patients with HF or post MI through May 2015. The comparator included standard medication or placebo, or both. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Event rates were compared using a random effects model. Prospective RCTs of AAs with durations of at least 8 weeks were selected if they included at least one of the following outcomes: SCD, all-cause/cardiovascular mortality, all-cause/cardiovascular hospitalization and common side effects (hyperkalemia, renal function degradation and gynecomastia). RESULTS: Data from 19,333 patients enrolled in 25 trials were included. In patients with HF, this treatment significantly reduced the risk of SCD by 19% (RR 0.81; 95% CI, 0.67-0.98; p = 0.03); all-cause mortality by 19% (RR 0.81; 95% CI, 0.74-0.88, p<0.00001) and cardiovascular death by 21% (RR 0.79; 95% CI, 0.70-0.89, p<0.00001). In patients with post-MI, the matching reduced risks were 20% (RR 0.80; 95% CI, 0.66-0.98; p = 0.03), 15% (RR 0.85; 95% CI, 0.76-0.95, p = 0.003) and 17% (RR 0.83; 95% CI, 0.74-0.94, p = 0.003), respectively. Concerning both subgroups, the relative risks respectively decreased by 19% (RR 0.81; 95% CI, 0.71-0.92; p = 0.002) for SCD, 18% (RR 0.82; 95% CI, 0.77-0.88, p < 0.0001) for all-cause mortality and 20% (RR 0.80; 95% CI, 0.74-0.87, p < 0.0001) for cardiovascular mortality in patients treated with AAs. As well, hospitalizations were significantly reduced, while common adverse effects were significantly increased. CONCLUSION: Aldosterone antagonists appear to be effective in reducing SCD and other mortality events, compared with placebo or standard medication in patients with HF and/or after a MI.
Resumo:
Background: The desire to improve the quality of health care for an aging population with multiple chronic diseases is fostering a rapid growth in inter-professional team care, supported by health professionals, governments, businesses and public institutions. However, the weight of evidence measuring the impact of team care on patient and health system outcomes has not, heretofore, been clear. To address this deficiency, we evaluated published evidence for the clinical effectiveness of team care within a chronic disease management context in a systematic overview. Methods: A search strategy was built for Medline using medical subject headings and other relevant keywords. After testing for perform- ance, the search strategy was adapted to other databases (Cinhal, Cochrane, Embase, PsychInfo) using their specific descriptors. The searches were limited to reviews published between 1996 and 2011, in English and French languages. The results were analyzed by the number of studies favouring team intervention, based on the direction of effect and statistical significance for all reported outcomes. Results: Sixteen systematic and 7 narrative reviews were included. Diseases most frequently targeted were depression, followed by heart failure, diabetes and mental disorders. Effective- ness outcome measures most commonly used were clinical endpoints, resource utilization (e.g., emergency room visits, hospital admissions), costs, quality of life and medication adherence. Briefly, while improved clinical and resource utilization endpoints were commonly reported as positive outcomes, mixed directional results were often found among costs, medication adherence, mortality and patient satisfaction outcomes. Conclusions: We conclude that, although suggestive of some specific benefits, the overall weight of evidence for team care efficacy remains equivocal. Further studies that examine the causal interactions between multidisciplinary team care and clinical and economic outcomes of disease management are needed to more accurately assess its net program efficacy and population effectiveness.
Resumo:
Prospective epidemiological data have shown that blood pressure has a graded, continuous adverse effect on the risk of various forms of CVD (including stroke, myocardial infarction, heart failure, peripheral arterial disease and end-stage renal disease). 'Raised blood pressure' is frequently considered to be any systolic blood pressure greater than 115 mmHg. It accounts for 45% of all heart disease deaths and 51% of all stroke-related deaths [1], which together are the biggest causes of morbidity and mortality worldwide [2,3,4]. Annually, there are >17 million deaths due to CVD worldwide, of which 9.4 million are attributable to complications of raised blood pressure. This highlights the importance of both high-risk and population-based strategies in blood pressure management and control.
Resumo:
Untill recently, congenital heart disease was considered as a childhood's disease. With improvement in pediatric survival, adults with a congenital heart disease (ACHD) represent an emerging group of patients who need specialized medical care. In 2010, the ESC published newguidelines on global and specific management of adults with congenital heart disease. ACHD centers organize appropriate medical care for these patients, promote specialist training and national scientific research in collaboration with other national ACHD centers.
Resumo:
Background: Disease management, a system of coordinated health care interventions for populations with chronic diseases in which patient self-care is a key aspect, has been shown to be effective for several conditions. Little is known on the supply of disease management programs in Switzerland. Objectives: To systematically search, record and evaluate data on existing disease management programs in Switzerland. Methods: Programs met our operational definition of disease management if their interventions targeted a chronic disease, included a multidisciplinary team and lasted at least 6 months. To find existing programs, we searched Swiss official websites, Swiss web-pages using Google, medical electronic database (Medline), and checked references from selected documents. We also contacted personally known individuals, those identified as possibly working in the field, individuals working in major Swiss health insurance companies and people recommended by previously contacted persons (snow ball strategy). We developed an extraction grid and collected information pertaining to the following 8 domains: patient population, intervention recipient, intervention content, delivery personnel, method of communication, intensity and complexity, environment and clinical outcomes (measures?). Results: We identified 8 programs fulfilling our operational definition of disease management. Programs targeted patients with diabetes, hypertension, heart failure, obesity, alcohol dependence, psychiatric disorders or breast cancer, and were mainly directed towards patients. The interventions were multifaceted and included education in almost all cases. Half of the programs included regularly scheduled follow-up, by phone in 3 instances. Healthcare professionals involved were physicians, nurses, case managers, social workers, psychologists and dietitians. None fulfilled the 6 criteria established by the Disease Management Association of America. Conclusions: Our study shows that disease management programs, in a country with universal health insurance coverage and little incentive to develop new healthcare strategies, are scarce, although we may have missed existing programs. Nonetheless, those already implemented are very interesting and rather comprehensive. Appropriate evaluation of these programs should be performed in order to build upon them and try to design a generic disease management framework suited to the Swiss healthcare system.