162 resultados para Health risk assessment.
Resumo:
Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards.
Resumo:
Exposure to various pesticides has been characterized in workers and the general population, but interpretation and assessment of biomonitoring data from a health risk perspective remains an issue. For workers, a Biological Exposure Index (BEI®) has been proposed for some substances, but most BEIs are based on urinary biomarker concentrations at Threshold Limit Value - Time Weighted Average (TLV-TWA) airborne exposure while occupational exposure can potentially occurs through multiple routes, particularly by skin contact (i.e.captan, chlorpyrifos, malathion). Similarly, several biomonitoring studies have been conducted to assess environmental exposure to pesticides in different populations, but dose estimates or health risks related to these environmental exposures (mainly through the diet), were rarely characterized. Recently, biological reference values (BRVs) in the form of urinary pesticide metabolites have been proposed for both occupationally exposed workers and children. These BRVs were established using toxicokinetic models developed for each substance, and correspond to safe levels of absorption in humans, regardless of the exposure scenario. The purpose of this chapter is to present a review of a toxicokinetic modeling approach used to determine biological reference values. These are then used to facilitate health risk assessments and decision-making on occupational and environmental pesticide exposures. Such models have the ability to link absorbed dose of the parent compound to exposure biomarkers and critical biological effects. To obtain the safest BRVs for the studied population, simulations of exposure scenarios were performed using a conservative reference dose such as a no-observed-effect level (NOEL). The various examples discussed in this chapter show the importance of knowledge on urine collections (i.e. spot samples and complete 8-h, 12-h or 24-h collections), sampling strategies, metabolism, relative proportions of the different metabolites in urine, absorption fraction, route of exposure and background contribution of prior exposures. They also show that relying on urinary measurements of specific metabolites appears more accurate when applying this approach to the case of occupational exposures. Conversely, relying on semi-specific metabolites (metabolites common to a category of pesticides) appears more accurate for the health risk assessment of environmental exposures given that the precise pesticides to which subjects are exposed are often unknown. In conclusion, the modeling approach to define BRVs for the relevant pesticides may be useful for public health authorities for managing issues related to health risks resulting from environmental and occupational exposures to pesticides.
Resumo:
The academic activities led by the Unit of Community Pharmacy can be classified as translational. Our group is interested in person-centered pharmaceutical services aimed at a more responsible use of drugs (effectiveness, safety, efficiency) in collaboration with physicians and other health care professionals in a primary care setting. The following domains of education and research are high priorities for our group: medication therapy management, medication adherence, integrated care, individualization of therapies, care management for the elderly and e-health.
Resumo:
Perioperative cardiac events occurring in patients undergoing non-cardiac surgery are a common cause of morbidity and mortality. Current guidelines recommend an individualized approach to preoperative cardiac risk stratification prior to non-cardiac surgery, integrating risk factors both for the patient (active cardiac conditions, clinical risk factors, functional capacity) and for the planned surgery. Preoperative cardiac investigations are currently limited to high-risk patients in whom they may contribute to modify the perioperative management. A multidisciplinary approach to such patients, integrating the general practitioner, is recommended in order to define an individualized peri-operative strategy.
Resumo:
NanoImpactNet (NIN) is a multidisciplinary European Commission funded network on the environmental, health and safety (EHS) impact of nanomaterials. The 24 founding scientific institutes are leading European research groups active in the fields of nanosafety, nanorisk assessment and nanotoxicology. This 4−year project is the new focal point for information exchange within the research community. Contact with other stakeholders is vital and their needs are being surveyed. NIN is communicating with 100s of stakeholders: businesses; internet platforms; industry associations; regulators; policy makers; national ministries; international agencies; standard−setting bodies and NGOs concerned by labour rights, EHS or animal welfare. To improve this communication, internet research, a questionnaire distributed via partners and targeted phone calls were used to identify stakeholders' interests and needs. Knowledge gaps and the necessity for further data mentioned by representatives of all stakeholder groups in the targeted phone calls concerned: potential toxic and safety hazards of nanomaterials throughout their lifecycles; fate and persistence of nanoparticles in humans, animals and the environment; risks associated to nanoparticle exposure; participation in the preparation of nomenclature, standards, methodologies, protocols and benchmarks; development of best practice guidelines; voluntary schemes on responsibility; databases of materials, research topics and themes. Findings show that stakeholders and NIN researchers share very similar knowledge needs, and that open communication and free movement of knowledge will benefit both researchers and industry. Consequently NIN will encourage stakeholders to be active members. These survey findings will be used to improve NIN's communication tools to further build on interdisciplinary relationships towards a healthy future with nanotechnology.
Resumo:
QUESTION UNDER STUDY: Hospitals transferring patients retain responsibility until admission to the new health care facility. We define safe transfer conditions, based on appropriate risk assessment, and evaluate the impact of this strategy as implemented at our institution. METHODS: An algorithm defining transfer categories according to destination, equipment monitoring, and medication was developed and tested prospectively over 6 months. Conformity with algorithm criteria was assessed for every transfer and transfer category. After introduction of a transfer coordination centre with transfer nurses, the algorithm was implemented and the same survey was carried out over 1 year. RESULTS: Over the whole study period, the number of transfers increased by 40%, chiefly by ambulance from the emergency department to other hospitals and private clinics. Transfers to rehabilitation centres and nursing homes were reassigned to conventional vehicles. The percentage of patients requiring equipment during transfer, such as an intravenous line, decreased from 34% to 15%, while oxygen or i.v. drug requirement remained stable. The percentage of transfers considered below theoretical safety decreased from 6% to 4%, while 20% of transfers were considered safer than necessary. A substantial number of planned transfers could be "downgraded" by mutual agreement to a lower degree of supervision, and the system was stable on a short-term basis. CONCLUSION: A coordinated transfer system based on an algorithm determining transfer categories, developed on the basis of simple but valid medical and nursing criteria, reduced unnecessary ambulance transfers and treatment during transfer, and increased adequate supervision.
Resumo:
In occupational exposure assessment of airborne contaminants, exposure levels can either be estimated through repeated measurements of the pollutant concentration in air, expert judgment or through exposure models that use information on the conditions of exposure as input. In this report, we propose an empirical hierarchical Bayesian model to unify these approaches. Prior to any measurement, the hygienist conducts an assessment to generate prior distributions of exposure determinants. Monte-Carlo samples from these distributions feed two level-2 models: a physical, two-compartment model, and a non-parametric, neural network model trained with existing exposure data. The outputs of these two models are weighted according to the expert's assessment of their relevance to yield predictive distributions of the long-term geometric mean and geometric standard deviation of the worker's exposure profile (level-1 model). Bayesian inferences are then drawn iteratively from subsequent measurements of worker exposure. Any traditional decision strategy based on a comparison with occupational exposure limits (e.g. mean exposure, exceedance strategies) can then be applied. Data on 82 workers exposed to 18 contaminants in 14 companies were used to validate the model with cross-validation techniques. A user-friendly program running the model is available upon request.
Resumo:
As a part of the HIV behavioural surveillance system in Switzerland, repeated cross-sectional surveys were conducted in 1993, 1994, 1996, 2000 and 2006 among attenders of all low threshold facilities (LTFs) with needle exchange programmes and/or supervised drug consumption rooms for injection or inhalation in Switzerland. Data were collected in each LTF over five consecutive days, using a questionnaire that was partly completed by an interviewer and partly self administered. The questionnaire was structured around three topics: socio-demographic characteristics, drug consumption, health and risk/preventive behaviour. Analysis was restricted to attenders who had injected drugs during their lifetime (IDUs). Between 1993 and 2006, the median age of IDUs rose by 10 years. IDUs are severely marginalised and their social situation has improved little. The borrowing of used injection equipment (syringe or needle already used by other person) in the last six months decreased (16.5% in 1993, 8.9% in 2006) but stayed stable at around 10% over the past three surveys. Other risk behaviour, such as sharing spoons, cotton or water, was reported more frequently, although also showed a decreasing trend. The reported prevalence of HIV remained fairly stable at around 10% between 1993 and 2006; reported levels of hepatitis C virus (HCV) prevalence were high (56.4% in 2006). In conclusion, the overall decrease in the practice of injection has reduced the potential for transmission of infections. However as HCV prevalence is high this is of particular concern, as the current behaviour of IDUs indicates a potential for further spreading of the infection. Another noteworthy trend is the significant decrease in condom use in the case of paid sex.
Resumo:
NanoImpactNet (NIN) is a multidisciplinary European Commission funded network on the environmental, health and safety (EHS) impact of nanomaterials. The 24 founding scientific institutes are leading European research groups active in the fields of nanosafety, nanorisk assessment and nanotoxicology. This 4-year project is the new focal point for information exchange within the research community. Contact with other stakeholders is vital and their needs are being surveyed. NIN is communicating with 100s of stakeholders: businesses; internet platforms; industry associations; regulators; policy makers; national ministries; international agencies; standard-setting bodies and NGOs concerned by labour rights, EHS or animal welfare. To improve this communication, internet research, a questionnaire distributed via partners and targeted phone calls were used to identify stakeholders' interests and needs. Knowledge gaps and the necessity for further data mentioned by representatives of all stakeholder groups in the targeted phone calls concerned: • the potential toxic and safety hazards of nanomaterials throughout their lifecycles; • the fate and persistence of nanoparticles in humans, animals and the environment; • the associated risks of nanoparticle exposure; • greater participation in: the preparation of nomenclature, standards, methodologies, protocols and benchmarks; • the development of best practice guidelines; • voluntary schemes on responsibility; • databases of materials, research topics and themes, but also of expertise. These findings suggested that stakeholders and NIN researchers share very similar knowledge needs, and that open communication and free movement of knowledge will benefit both researchers and industry. Subsequently a workshop was organised by NIN focused on building a sustainable multi-stakeholder dialogue. Specific questions were asked to different stakeholder groups to encourage discussions and open communication. 1. What information do stakeholders need from researchers and why? The discussions about this question confirmed the needs identified in the targeted phone calls. 2. How to communicate information? While it was agreed that reporting should be enhanced, commercial confidentiality and economic competition were identified as major obstacles. It was recognised that expertise was needed in the areas of commercial law and economics for a wellinformed treatment of this communication issue. 3. Can engineered nanomaterials be used safely? The idea that nanomaterials are probably safe because some of them have been produced 'for a long time', was questioned, since many materials in common use have been proved to be unsafe. The question of safety is also about whether the public has confidence. New legislation like REACH could help with this issue. Hazards do not materialise if exposure can be avoided or at least significantly reduced. Thus, there is a need for information on what can be regarded as acceptable levels of exposure. Finally, it was noted that there is no such thing as a perfectly safe material but only boundaries. At this moment we do not know where these boundaries lie. The matter of labelling of products containing nanomaterials was raised, as in the public mind safety and labelling are connected. This may need to be addressed since the issue of nanomaterials in food, drink and food packaging may be the first safety issue to attract public and media attention, and this may have an impact on 'nanotechnology as a whole. 4. Do we need more or other regulation? Any decision making process should accommodate the changing level of uncertainty. To address the uncertainties, adaptations of frameworks such as REACH may be indicated for nanomaterials. Regulation is often needed even if voluntary measures are welcome because it mitigates the effects of competition between industries. Data cannot be collected on voluntary bases for example. NIN will continue with an active stakeholder dialogue to further build on interdisciplinary relationships towards a healthy future with nanotechnology.
Resumo:
To evaluate how young physicians in training perceive their patients' cardiovascular risk based on the medical charts and their clinical judgment. Cross sectional observational study. University outpatient clinic, Lausanne, Switzerland. Two hundred hypertensive patients and 50 non-hypertensive patients with at least one cardiovascular risk factor. Comparison of the absolute 10-year cardiovascular risk calculated by a computer program based on the Framingham score and adapted for physicians by the WHO/ISH with the perceived risk as assessed clinically by the physicians. Physicians underestimated the 10-year cardiovascular risk of their patients compared to that calculated with the Framingham score. Concordance between methods was 39% for hypertensive patients and 30% for non-hypertensive patients. Underestimation of cardiovascular risks for hypertensive patients was related to the fact they had a stabilized systolic blood pressure under 140 mm Hg (OR = 2.1 [1.1; 4.1]). These data show that young physicians in training often have an incorrect perception of the cardiovascular risk of their patients with a tendency to underestimate the risk. However, the calculated risk could also be slightly overestimated when applying the Framingham Heart Study model to a Swiss population. To implement a systematic evaluation of risk factors in primary care a greater emphasis should be placed on the teaching of cardiovascular risk evaluation and on the implementation of quality improvement programs.
Resumo:
Background: Cardio-vascular diseases (CVD), their well established risk factors (CVRF) and mental disorders are common and co-occur more frequently than would be expected by chance. However, the pathogenic mechanisms and course determinants of both CVD and mental disorders have only been partially identified.Methods/Design: Comprehensive follow-up of CVRF and CVD with a psychiatric exam in all subjects who participated in the baseline cross-sectional CoLaus study (2003-2006) (n=6'738) which also included a comprehensive genetic assessment. The somatic investigation will include a shortened questionnaire on CVRF, CV events and new CVD since baseline and measurements of the same clinical and biological variables as at baseline. In addition, pro-inflammatory markers, persistent pain and sleep patterns and disorders will be assessed. In the case of a new CV event, detailed information will be abstracted from medical records. Similarly, data on the cause of death will be collected from the Swiss National Death Registry. The comprehensive psychiatric investigation of the CoLaus/PsyCoLaus study will use contemporary epidemiological methods including semi-structured diagnostic interviews, experienced clinical interviewers, standardized diagnostic criteria including threshold according to DSM-IV and sub-threshold syndromes and supplementary information on risk and protective factors for disorders. In addition, screening for objective cognitive impairment will be performed in participants older than 65 years.Discussion: The combined CoLaus/PsyCoLaus sample provides a unique opportunity to obtain prospective data on the interplay between CVRF/CVD and mental disorders, overcoming limitations of previous research by bringing together a comprehensive investigation of both CVRF and mental disorders as well as a large number of biological variables and a genome-wide genetic assessment in participants recruited from the general population.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.