77 resultados para HOMO-LUMO energies


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-protein interactions encode the wiring diagram of cellular signaling pathways and their deregulations underlie a variety of diseases, such as cancer. Inhibiting protein-protein interactions with peptide derivatives is a promising way to develop new biological and therapeutic tools. Here, we develop a general framework to computationally handle hundreds of non-natural amino acid sidechains and predict the effect of inserting them into peptides or proteins. We first generate all structural files (pdb and mol2), as well as parameters and topologies for standard molecular mechanics software (CHARMM and Gromacs). Accurate predictions of rotamer probabilities are provided using a novel combined knowledge and physics based strategy. Non-natural sidechains are useful to increase peptide ligand binding affinity. Our results obtained on non-natural mutants of a BCL9 peptide targeting beta-catenin show very good correlation between predicted and experimental binding free-energies, indicating that such predictions can be used to design new inhibitors. Data generated in this work, as well as PyMOL and UCSF Chimera plug-ins for user-friendly visualization of non-natural sidechains, are all available at http://www.swisssidechain.ch. Our results enable researchers to rapidly and efficiently work with hundreds of non-natural sidechains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homologous recombination is important for the repair of double-strand breaks during meiosis. Eukaryotic cells require two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, for meiotic recombination. To date, it is not clear, at the biochemical level, why two homologs of RecA are necessary during meiosis. To gain insight into this, we purified Schizosaccharomyces pombe Rad51 and Dmc1 to homogeneity. Purified Rad51 and Dmc1 form homo-oligomers, bind single-stranded DNA preferentially, and exhibit DNA-stimulated ATPase activity. Both Rad51 and Dmc1 promote the renaturation of complementary single-stranded DNA. Importantly, Rad51 and Dmc1 proteins catalyze ATP-dependent strand exchange reactions with homologous duplex DNA. Electron microscopy reveals that both S. pombe Rad51 and Dmc1 form nucleoprotein filaments. Rad51 formed helical nucleoprotein filaments on single-stranded DNA, whereas Dmc1 was found in two forms, as helical filaments and also as stacked rings. These results demonstrate that Rad51 and Dmc1 are both efficient recombinases in lower eukaryotes and reveal closer functional and structural similarities between the meiotic recombinase Dmc1 and Rad51. The DNA strand exchange activity of both Rad51 and Dmc1 is most likely critical for proper meiotic DNA double-strand break repair in lower eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-ligand docking has made important progress during the last decade and has become a powerful tool for drug development, opening the way to virtual high throughput screening and in silico structure-based ligand design. Despite the flattering picture that has been drawn, recent publications have shown that the docking problem is far from being solved, and that more developments are still needed to achieve high successful prediction rates and accuracy. Introducing an accurate description of the solvation effect upon binding is thought to be essential to achieve this goal. In particular, EADock uses the Generalized Born Molecular Volume 2 (GBMV2) solvent model, which has been shown to reproduce accurately the desolvation energies calculated by solving the Poisson equation. Here, the implementation of the Fast Analytical Continuum Treatment of Solvation (FACTS) as an implicit solvation model in small molecules docking calculations has been assessed using the EADock docking program. Our results strongly support the use of FACTS for docking. The success rates of EADock/FACTS and EADock/GBMV2 are similar, i.e. around 75% for local docking and 65% for blind docking. However, these results come at a much lower computational cost: FACTS is 10 times faster than GBMV2 in calculating the total electrostatic energy, and allows a speed up of EADock by a factor of 4. This study also supports the EADock development strategy relying on the CHARMM package for energy calculations, which enables straightforward implementation and testing of the latest developments in the field of Molecular Modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cleavage of messenger RNA (mRNA) precursors is an essential step in mRNA maturation. The signal recognized by the cleavage enzyme complex has been characterized as an A rich region upstream of the cleavage site containing a motif with consensus AAUAAA, followed by a U or UG rich region downstream of the cleavage site. RESULTS: We studied these signals using exhaustive databases of cleavage sites obtained from aligning raw expressed sequence tags (EST) sequences to genomic sequences in Homo sapiens and Drosophila melanogaster. These data show that the polyadenylation signal is highly conserved in human and fly. In addition, de novo motif searches generated a refined description of the U-rich downstream sequence (DSE) element, which shows more divergence between the two species. These refined motifs are applied, within a Hidden Markov Model (HMM) framework, to predict mRNA cleavage sites. CONCLUSION: We demonstrate that the DSE is a specific motif in both human and Drosophila. These findings shed light on the sequence correlates of a highly conserved biological process, and improve in silico prediction of 3' mRNA cleavage and polyadenylation sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: NR2E3 (PNR) is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS) and, more recently, with autosomal dominant retinitis pigmentosa (adRP). NR2E3 acts as a suppressor of the cone generation program in late mitotic retinal progenitor cells. In adult rod photoreceptors, NR2E3 represses cone-specific gene expression and acts in concert with the transcription factors CRX and NRL to activate rod-specific genes. NR2E3 and CRX have been shown to physically interact in vitro through their respective DNA-binding domains (DBD). The DBD also contributes to homo- and heterodimerization of nuclear receptors. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed NR2E3 homodimerization and NR2E3/CRX complex formation in an in vivo situation by Bioluminescence Resonance Energy Transfer (BRET(2)). NR2E3 wild-type protein formed homodimers in transiently transfected HEK293T cells. NR2E3 homodimerization was impaired in presence of disease-causing mutations in the DBD, except for the p.R76Q and p.R104W mutant proteins. Strikingly, the adRP-linked p.G56R mutant protein interacted with CRX with a similar efficiency to that of NR2E3 wild-type and p.R311Q proteins. In contrast, all other NR2E3 DBD-mutant proteins did not interact with CRX. The p.G56R mutant protein was also more effective in abolishing the potentiation of rhodospin gene transactivation by the NR2E3 wild-type protein. In addition, the p.G56R mutant enhanced the transrepression of the M- and S-opsin promoter, while all other NR2E3 DBD-mutants did not. CONCLUSIONS/SIGNIFICANCE: These results suggest different disease mechanisms in adRP- and ESCS-patients carrying NR2E3 mutations. Titration of CRX by the p.G56R mutant protein acting as a repressor in trans may account for the severe clinical phenotype in adRP patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centrifuge is a user-friendly system to simultaneously access Arabidopsis gene annotations and intra- and inter-organism sequence comparison data. The tool allows rapid retrieval of user-selected data for each annotated Arabidopsis gene providing, in any combination, data on the following features: predicted protein properties such as mass, pI, cellular location and transmembrane domains; SWISS-PROT annotations; Interpro domains; Gene Ontology records; verified transcription; BLAST matches to the proteomes of A.thaliana, Oryza sativa (rice), Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. The tool lends itself particularly well to the rapid analysis of contigs or of tens or hundreds of genes identified by high-throughput gene expression experiments. In these cases, a summary table of principal predicted protein features for all genes is given followed by more detailed reports for each individual gene. Centrifuge can also be used for single gene analysis or in a word search mode. AVAILABILITY: http://centrifuge.unil.ch/ CONTACT: edward.farmer@unil.ch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SASbur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, deltaGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC5o without reparametrization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the vast majority of bottom-up proteomics studies, protein digestion is performed using only mammalian trypsin. Although it is clearly the best enzyme available, the sole use of trypsin rarely leads to complete sequence coverage, even for abundant proteins. It is commonly assumed that this is because many tryptic peptides are either too short or too long to be identified by RPLC-MS/MS. We show through in silico analysis that 20-30% of the total sequence of three proteomes (Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Homo sapiens) is expected to be covered by Large post-Trypsin Peptides (LpTPs) with M(r) above 3000 Da. We then established size exclusion chromatography to fractionate complex yeast tryptic digests into pools of peptides based on size. We found that secondary digestion of LpTPs followed by LC-MS/MS analysis leads to a significant increase in identified proteins and a 32-50% relative increase in average sequence coverage compared to trypsin digestion alone. Application of the developed strategy to analyze the phosphoproteomes of S. pombe and of a human cell line identified a significant fraction of novel phosphosites. Overall our data indicate that specific targeting of LpTPs can complement standard bottom-up workflows to reveal a largely neglected portion of the proteome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined strategy based on the computation of absorption energies, using the ZINDO/S semiempirical method, for a statistically relevant number of thermally sampled configurations extracted from QM/MM trajectories is used to establish a one-to-one correspondence between the structures of the different early intermediates (dark, batho, BSI, lumi) involved in the initial steps of the rhodopsin photoactivation mechanism and their optical spectra. A systematic analysis of the results based on a correlation-based feature selection algorithm shows that the origin of the color shifts among these intermediates can be mainly ascribed to alterations in intrinsic properties of the chromophore structure, which are tuned by several residues located in the protein binding pocket. In addition to the expected electrostatic and dipolar effects caused by the charged residues (Glu113, Glu181) and to strong hydrogen bonding with Glu113, other interactions such as π-stacking with Ala117 and Thr118 backbone atoms, van der Waals contacts with Gly114 and Ala292, and CH/π weak interactions with Tyr268, Ala117, Thr118, and Ser186 side chains are found to make non-negligible contributions to the modulation of the color tuning among the different rhodopsin photointermediates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to the importance of sample preparation and extract separation, MS detection is a key factor in the sensitive quantification of large undigested peptides. In this article, a linear ion trap MS (LIT-MS) and a triple quadrupole MS (TQ-MS) have been compared in the detection of large peptides at subnanomolar concentrations. Natural brain natriuretic peptide, C-peptide, substance P and D-Junk-inhibitor peptide, a full D-amino acid therapeutic peptide, were chosen. They were detected by ESI and simultaneous MS(1) and MS(2) acquisitions. With direct peptide infusion, MS(2) spectra revealed that fragmentation was peptide dependent, milder on the LIT-MS and required high collision energies on the TQ-MS to obtain high-intensity product ions. Peptide adsorption on surfaces was overcome and peptide dilutions ranging from 0.1 to 25 nM were injected onto an ultra high-pressure LC system with a 1 mm id analytical column and coupled with the MS instruments. No difference was observed between the two instruments when recording in LC-MS(1) acquisitions. However, in LC-MS(2) acquisitions, a better sensitivity in the detection of large peptides was observed with the LIT-MS. Indeed, with the three longer peptides, the typical fragmentation in the TQ-MS resulted in a dramatic loss of sensitivity (> or = 10x).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RÉSUMÉ Les kinases activées par des mitogènes (MAPKs) constituent une importante famille d'enzymes conservée dans l'évolution. Elles forment un réseau de signalisation qui permet à la cellule de réguler spécifiquement divers processus impliqués dans la différenciation, la survie ou l'apoptose. Les kinases formant le module MAPK sont typiquement disposées en cascades de trois partenaires qui s'activent séquentiellement par phosphorylation. Le module minimum est constitué d'une MAPK kinase kinase (MAPKKK), d'une MAPK kinase (MAPKK) et d'une MAPK. Une fois activée, la MAPK phosphoryle différents substrats tels que des facteurs de transcription ou d'autres protéines. Chez les mammifères, trois groupes principaux de MAPKs ont été identifiés. Il s'agit du groupe des kinases régulées par des signaux extracellulaires du type «mitogènes » (ERK), ainsi que des groupes p38 et cJun NH2-terminal kinase (JNK), ou SAPK pour stress activated protein kinase, plutôt activées par des stimuli de type «stress ». De nombreuses études ont impliqué JNK dans la régulation de différents processus physiologiques et pathologiques, comme le diabète, les arthrites rhumatoïdes, l'athérosclérose, l'attaque cérébrale, les maladies de Parkinson et d'Alzheimer. JNK, en particulier joue un rôle dans la mort des cellules sécrétrices d'insuline induite par l'interleukine (IL)-1 β, lors du développement du diabète de type 1. IB1 est une protéine scaffold (échafaud) qui participe à l'organisation du module de JNK. IB1 est fortement exprimée dans les neurones et les cellules β du pancréas. Elle a été impliquée dans la survie des cellules, la régulation de l'expression du transporteur du glucose de type 2 (Glut-2) et dans le processus de sécrétion d'insuline glucose-dépendante. IBl est caractérisée par plusieurs domaines d'interaction protéine-protéine : un domaine de liaison à JNK (JBD), un domaine homologue au domaine 3 de Src (SH3) et un domaine d'interaction avec des tyrosines phosphorylées (PID). Des partenaires d'IB1, incluant les membres de la familles des kinases de lignée mélangée (MLKs), la MAPKK MKK7, la phosphatase 7 des MAPKs (MKP-7) ainsi que la chaîne légère de la kinésine, ont été isolés. Tous ces facteurs, sauf les MLKs et MKK7 interagissent avec le domaine PID ou l'extrême partie C-terminale d'IBl (la chaîne légère de la kinésine). Comme d'autres protéines scaffolds déjà décrites, IBl et un autre membre de la famille, IB2, sont capables d'homo- et d'hétérodimériser. L'interaction a lieu par l'intermédiaire de leur région C-terminale, contenant les domaines SH3 et PID. Mais ni le mécanisme moléculaire, ni la fonction de la dimérisation n'ont été caractérisés. Le domaine SH3 joue un rôle central lors de l'assemblage de complexes de macromolécules impliquées dans la signalisation intracellulaire. Il reconnaît de préférence des ligands contenant un motif riche en proline de type PxxP et s'y lie. Jusqu'à maintenant, tous les ligands isolés se liant à un domaine SH3 sont linéaires. Bien que le domaine SH3 soit un domaine important de la transmission des signaux, aucun partenaire interagissant spécifiquement avec le domaine SH3 d'IB1 n'a été identifié. Nous avons démontré qu'IBl homodimérisait par un nouveau set unique d'interaction domaine SH3 - domaine SH3. Les études de cristallisation ont démontré que l'interface recouvrait une région généralement impliquée dans la reconnaissance classique d'un motif riche en proline de type PxxP, bien que le domaine SH3 d'IB1 ne contienne aucun motif PxxP. L'homodimère d'IB1 semble extrêmement stable. Il peut cependant être déstabilisé par trois mutations ponctuelles dirigées contre des résidus clés impliqués dans la dimérisation. Chaque mutation réduit l'activation basale de JNK dépendante d'IB 1 dans des cellules 293T. La déstabilisation de la dimérisation induite par la sur-expression du domaine SH3, provoque une diminution de la sécrétion d'insuline glucose dépendant. SUMMARY Mitogen activated kinases (MAPK) are an important and conserved enzyme family. They form a signaling network required to specifically regulate process involved in cell differentiation, proliferation or death. A MAPK module is typically organized in a threekinase cascade which are activated by sequential phosphorylation. The MAPK kinase kinase (MAPKKK), the MAPK kinase (MAPKK) and the MAPK constitute the minimal module. Once activated, the MAPK phosphorylates its targets like transcription factors or other proteins. In mammals, three major groups of MAPKs have been identified : the group of extra-cellular regulated kinase (ERK) which is activated by mitogens and the group of p38 and cJun NH2-terminal kinase (JNK) or SAPK for stress activated protein kinase, which are activated by stresses. Many studies implicated JNK in many physiological or pathological process regulations, like diabetes, rheumatoid arthritis, arteriosclerosis, strokes or Parkinson and Alzheimer disease. In particular, JNK plays a crucial role in pancreatic β cell death induced by Interleukin (IL)-1 β in type 1 diabetes. Islet-brain 1 (IB 1) is a scaffold protein that interacts with components of the JNK signal-transduction pathway. IB 1 is expressed at high levels in neurons and in pancreatic β-cells, where it has been implicated in cell survival, in regulating expression of the glucose transporter type 2 (Glut-2) and in glucose-induced insulin secretion. It contains several protein-protein interaction domains, including a JNK-binding domain (JBD), a Src homology 3 domain (SH3) and a phosphotyrosine interaction domain (PID). Proteins that have been shown to associate with IB 1 include members of the Mixed lineage kinase family (MLKs), the MAPKK MKK7, the MAPK phosphatase-7 MKP7, as well as several other ligands including kinesin light chain, LDL receptor related family members and the amyloid precursor protein APP. All these factors, except MLK3 and MKK7 have been shown to interact with the PID domain or the extreme C-terminal part (Kinesin light chain) of IB 1. As some scaffold already described, IB 1 and another member of the family, IB2, have previously been shown to engage in oligomerization through their respective C-terminal regions that include the SH3 and PID domains. But neither the molecular mechanisms nor the function of dimerization have yet been characterized. SH3 domains are central in the assembly of macromolecular complexes involved in many intracellular signaling pathways. SH3 domains are usually characterized by their preferred recognition of and association with canonical PxxP motif. In all these cases, a single linear sequence is sufficient for binding to the SH3 domain. However, although SH3 domains are important elements of signal transduction, no protein that interacts specifically with the SH3 domain of IB 1 has been identified so far. Here, we show that IB 1 homodimerizes through a navel and unique set of SH3-SH3 interactions. X-ray crystallography studies indicate that the dieter interface covers a region usually engaged in PxxP-mediated ligand recognition, even though the IB 1 SH3 domain lacks this motif. The highly stable IB 1 homodimer can be significantly destabilized in vitro by individual point-mutations directed against key residues involved in dimerization. Each mutation reduces IB 1-dependent basal JNK activity in 293T cells. Impaired dimerization induced by over-expression of the SH3 domain also results in a significant reduction in glucose-dependent insulin secretion in pancreatic β-cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To report a single-center experience treating patients with squamous- cell carcinoma of the anal canal using helical Tomotherapy (HT) and concurrent chemotherapy (CT).Materials/Methods: From October 2007 to February 2011, 55 patients were treated with HT and concurrent CT (5-fluorouracil/capecitabin and mitomycin) for anal squamous-cell carcinoma. All patients underwent computed- tomography-based treatment planning, with pelvic and inguinal nodes receiving 36 Gy in 1.8 Gy/fraction. Following a planned 1-week break, primary tumor site and involved nodes were boosted to a total dose 59.4 Gy in 1.8 Gy/fraction. Dose-volume histograms of several organs at risk (OAR; bladder, small intestine, rectum, femoral heads, penile bulb, external genitalia) were assessed in terms of conformal avoidance. All toxicity was scored according to the CTCAE, v.3.0. HT plans and treatment were implemented using the Tomotherapy, Inc. software and hardware. For dosimetric comparisons, 3D RT and/or IMRT plans were also computed for some of the patients using the CMS planning system, for treatment with 6-18 MV photons and/or electrons with suitable energies from a Siemens Primus linear accelerator equipped with a multileaf collimator.Locoregional control and survival curves were compared with the log-rank test, and multivariate analysis by the Cox model.Results: With 360-degree-of-freedom beam projection, HT has an advantage over other RT techniques (3D or 5-field step-and-shot IMRT). There is significant improvement over 3D or 5-field IMRT plans in terms of dose conformity around the PTV, and dose gradients are steeper outside the target volume, resulting in reduced doses to OARs. Using HT, acute toxicity was acceptable, and seemed to be better than historical standards.Conclusions: Our results suggest that HT combined with concurrent CT for anal cancer is effective and tolerable. Compared to 3D RT or 5-field step-andshot IMRT, there is better conformity around the PTV, and better OAR sparing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Afin d'étudier l'influence du nombre de reines par colonie sur les processus de reconnaissance, nous avons effectué des tests d'attraction d'ouvrières envers des reines homo et hétérocoloniales. Ces tests ont démontré que le niveau d'attraction des ouvrières était plus élevé envers les reines homocoloniales qu'envers les reines hétérocoloniales, ce qui démontre que les ouvrières sont capables de discriminer entre les deux types de reines. Cette discrimination résulte de l'apprentissage par les ouvrières de l'odeur coloniale probablement juste après l'émergence ou même peut-être avant. Dans nos expériences, les reines étaient vraisemblablement une source importante de cette odeur coloniale. La comparaison entre des sociétés expérimentales monogynes et polygynes a montré que les processus de reconnaissance étaient perturbés en sociétés polygynes. Ces résultats nous amènent à formuler l'hypothèse qu'en sociétés polygynes, le mélange de plusieurs complexes phéromonaux produits par chacune des reines entraîne une odeur coloniale moins spécifique qu'en société monogyne où il y a production d'un complexe phéromonal royal unique. Ces résultats sont discutés par rapport aux autres implications de la polygynie et tout particulièrement la perte d'agressivité entre individus de différentes colonies chez I. humilis et d'autres espèces de fourmis polygynes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: APETx2, a toxin from the sea anemone Anthropleura elegantissima, inhibits acid-sensing ion channel 3 (ASIC3)-containing homo- and heterotrimeric channels with IC(50) values < 100 nM and 0.1-2 µM respectively. ASIC3 channels mediate acute acid-induced and inflammatory pain response and APETx2 has been used as a selective pharmacological tool in animal studies. Toxins from sea anemones also modulate voltage-gated Na(+) channel (Na(v) ) function. Here we tested the effects of APETx2 on Na(v) function in sensory neurones.¦EXPERIMENTAL APPROACH: Effects of APETx2 on Na(v) function were studied in rat dorsal root ganglion (DRG) neurones by whole-cell patch clamp.¦KEY RESULTS: APETx2 inhibited the tetrodotoxin (TTX)-resistant Na(v) 1.8 currents of DRG neurones (IC(50) , 2.6 µM). TTX-sensitive currents were less inhibited. The inhibition of Na(v) 1.8 currents was due to a rightward shift in the voltage dependence of activation and a reduction of the maximal macroscopic conductance. The inhibition of Na(v) 1.8 currents by APETx2 was confirmed with cloned channels expressed in Xenopus oocytes. In current-clamp experiments in DRG neurones, the number of action potentials induced by injection of a current ramp was reduced by APETx2.¦CONCLUSIONS AND IMPLICATIONS: APETx2 inhibited Na(v) 1.8 channels, in addition to ASIC3 channels, at concentrations used in in vivo studies. The limited specificity of this toxin should be taken into account when using APETx2 as a pharmacological tool. Its dual action will be an advantage for the use of APETx2 or its derivatives as analgesic drugs.