69 resultados para HEME EDGE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analysed the composition of phyllosilicate minerals in sediments deposited by the Rhone and Oberaar glaciers (Swiss Alps), in order to identify processes and rates of biogeochemical weathering in relation to glacial erosion. The investigated sediments are part of chronosequences consisting of (A) suspended, "fresh" sediment in melt water; (B) terminal moraines from the Little Ice Age (LIA; approximately 1560-1850); and (C) tilts of the Younger Dryas interval (YD; approximately 11'500y BP). Secondary weathering products associated with the suspended sediment have not been observed: we therefore exclude intermittent subglacial storage and weathering of this material and assume that the suspended sediment is directly derived from mechanically abraded bedrock. This implies that biogeochemical weathering processes started once the glacially-derived sediment was deposited in the proglacial area. The combination of a developing vegetation cover, the generally high permeability allowing the percolation of precipitation, and the chemical reactivity related to the dominance of fine-grained material (<63 pm) drives the weathering process and the initial Umbrepts present in LIA profiles undergo podzolisation and lead to the formation of Humods observed in YD profiles. Systematic XRD analyses of these chronosequences show a progressive decrease in biotite contents and a concomitant increase in pedogenically formed vermiculite with increasing sediment age. Biotite contents decrease by 25-50% in the upper 30 cm of the moraines after 145-275 yr in the proglacial environment. Biotite weathering rates are calculated using the difference in the biotite content between unweathered and weathered glacial sediments within the investigated profiles. The reactive mineral surface area is estimated geometrically, both with regards to the total relative surface (WRT) as well as to the relative edge surface (WRE). WRT Biotite weathering rates are estimated as 10(-13)-10-(15) mol(biotite) m(biotite)(-2) s(-1). WRE Biotite weathering rates are on the order of 10(-13)-10(-14) mol(biotite) m(biotite)(-2) s(-1). Biotite weathering rates obtained by this study are in the order of one magnitude higher in comparison to other published field-based weathering rates. Using biotite as an indicator, we therefore suggest that glacially-derived material in the area of the Oberaar and Rhone glaciers is generally subjected to enhanced biogeochemical weathering, starting immediately after deposition in the proglacial zone and subsequently continuing for thousands of years after glacier retreat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Retinal degeneration is associated with iron accumulation in several rodent models in which iron-regulating proteins are impaired. Oxidative stress is catalyzed by unbound iron. METHODS: The role of the heavy chain of ferritin, which sequesters iron, in regulating the thickness of the photoreceptor nuclear layer in the 4- and 16-month-old wild-type H ferritin (HFt(+/+)) and heterozygous H ferritin (HFt(+/-)) mice was investigated, before and 12 days after exposure to 13,000-lux light for 24 hours. The regulation of gene expression of the various proteins involved in iron homeostasis, such as transferrin, transferrin receptor, hephaestin, ferroportin, iron regulatory proteins 1 and 2, hepcidin, ceruloplasmin, and heme-oxygenase 1, was analyzed by quantitative (q)RT-PCR during exposure (2, 12, and 24 hours) and 24 hours after 1 day of exposure in the 4-month-old HFt(+/+) and HFt(+/-) mouse retinas. RESULTS: Retinal degeneration in the 4-month-old HFt(+/-) mice was more extensive than in the HFt(+/+) mice. Yet, it was more extensive in both of the 16-month-old mouse groups, revealing the combined effect of age and excessive light. Injury caused by excessive light modified the temporal gene expression of iron-regulating proteins similarly in the HFt(+/-) and HFt(+/+) mice. CONCLUSIONS: Loss of one allele of H ferritin appears to increase light-induced degeneration. This study highlighted that oxidative stress related to light-induced injury is associated with major changes in gene expression of iron metabolism proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a segmentation method based on the geometric representation of images as 2-D manifolds embedded in a higher dimensional space. The segmentation is formulated as a minimization problem, where the contours are described by a level set function and the objective functional corresponds to the surface of the image manifold. In this geometric framework, both data-fidelity and regularity terms of the segmentation are represented by a single functional that intrinsically aligns the gradients of the level set function with the gradients of the image and results in a segmentation criterion that exploits the directional information of image gradients to overcome image inhomogeneities and fragmented contours. The proposed formulation combines this robust alignment of gradients with attractive properties of previous methods developed in the same geometric framework: 1) the natural coupling of image channels proposed for anisotropic diffusion and 2) the ability of subjective surfaces to detect weak edges and close fragmented boundaries. The potential of such a geometric approach lies in the general definition of Riemannian manifolds, which naturally generalizes existing segmentation methods (the geodesic active contours, the active contours without edges, and the robust edge integrator) to higher dimensional spaces, non-flat images, and feature spaces. Our experiments show that the proposed technique improves the segmentation of multi-channel images, images subject to inhomogeneities, and images characterized by geometric structures like ridges or valleys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: : We describe a retinal endovascular fibrinolysis technique to directly reperfuse experimentally occluded retinal veins using a simple micropipette. METHODS: : Retinal vein occlusion was photochemically induced in 12 eyes of 12 minipigs: after intravenous injection of 10% fluorescein (1-mL bolus), the targeted retinal vein segment was exposed to thrombin (50 units) and to Argon laser (100-200 mW) through a pars plana approach. A beveled micropipette with a 30-μm-diameter sharp edge was used for micropuncture of the occluded vein and endovascular microinjection of tissue plasminogen activator (50 μg/mL) in 11 eyes. In one control eye, balanced salt solution was injected. The lesion site was examined histologically. RESULTS: : Retinal vein occlusion was achieved in all cases. Endovascular microinjection of tissue plasminogen activator or balanced salt solution led to reperfusion of the occluded retinal vein in all cases. Indicative of successful reperfusion were the following: continuous endovascular flow, unaffected collateral circulation, no optic disk ischemia, and no venous wall bleeding. However, balanced salt solution injection was accompanied by thrombus formation at the punctured site, whereas no thrombus was observed with tissue plasminogen activator injection. CONCLUSION: : Retinal endovascular fibrinolysis constitutes an efficient method of micropuncture and reperfusion of an experimentally occluded retinal vein. Thrombus formation at the punctured site can be prevented by injection of tissue plasminogen activator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Himalayan orogen is the result of the collision between the Indian and Asian continents that began 55-50 Ma ago, causing intracontinental thrusting and nappe formation. Detailed mapping as well as structural and microfabric analyses on a traverse from the Tethyan Himalaya southwestward through the High Himalayan Crystalline and the Main Central Thrust zone (MCT zone) to the Lesser Himalayan Sequence in the Spiti-eastern Lahul-Parvati valley area reveal eight main phases of deformation, a series of late stage phases and five stages of metamorphic crystallization. This sequence of events is integrated into a reconstruction of the tectonometamorphic evolution of the Himalayan orogen in northern Himachal Pradesh. The oldest phase D-1 is preserved as relies in the High Himalayan Crystalline. Its deformational conditions are poorly known, but the metamorphic evolution is well documented by a prograde metamorphism reaching peak conditions within the upper amphibolite facies. This indicates that D-1 was an important tectonometamorphic event including considerable crustal thickening. The structural, metamorphic and sedimentary record suggest that D-1 most probably represents an early stage of continental collision. The first event clearly attributed to the collision between India and Asia is documented by two converging nappe systems, the NE-verging Shikar Beh Nappe and the SW-verging north Himalayan nappes. The D-2 Shikar Beh Nappe is characterized by isoclinal folding and top-to-the NE shearing, representing the main deformation in the High Himalayan Crystalline. D-2 also caused the main metamorphism in the High Himalayan Crystalline that was of a Barrovian-type, reaching upper amphibolite facies peak conditions. The Shikar Beh Nappe is interpreted to have formed within the Indian crust SW of the subduction zone. Simultaneously with NE-directed nappe formation, incipient subduction of India below Asia caused stacking of the SW-verging north Himalayan Nappes, that were thrust from the northern edge of the subducted continent toward the front of the Shikar Beh Nappe. As a result, the SW-verging folds of the D-3 Main Fold Zone formed in the Tethyan Himalaya below the front of the north Himalayan nappes. D-3 represents the main deformation in the Tethyan Himalaya, associated with a greenschist facies metamorphism. Folding within the Main Fold Zone subsequently propagated toward SW into the High Himalayan Crystalline, where it overprinted the preexisting D-2 structures. After subduction at the base of the north Himalayan nappes, the subduction zone stepped to the base of the High Himalayan Crystalline, where D-3 folds were crosscut by SW-directed D-4 thrusting. During D-4, the Crystalline Nappe, comprising the Main Fold Zone and relies of the Shikar Beh Nappe was thrust toward SW over the Lesser Himalayan Sequence along the 4 to 5 kms thick Main Central Thrust zone. Thrusting was related to a retrograde greenschist facies overprint at the base of the Crystalline Nappe and to pro-grade greenschist facies conditions in the Lesser Himalayan Sequence. Simultaneously with thrusting at the base of the Crystalline Nappe, higher crustal levels were affected by NE-directed D-5 normal extensional shearing and by dextral strike-slip motion, indicating that the high-grade metamorphic Crystalline Nappe was extruded between the low-grade metamorphic Lesser Himalayan Sequence at the base and the north Himalayan nappes at the top. The upper boundary of the Crystalline Nappe is not clearly delimited and passes gradually into the low-grade rocks at the front of the north Himalayan nappes. Extrusion of the Crystalline Nappe was followed by the phase D-6, characterized by large-scale, upright to steeply inclined, NE-verging folds and by another series of normal and extensional structures D-7+D-8 that may be related to ongoing extrusion of the Crystalline Nappe. The late stage evolution is represented by the phases D-A and D-B that indicate shortening parallel to the axis of the mountain chain and by D-C that is interpreted to account for the formation of large-scale domes with NNW-SSE-trending axes, an example of which is exposed in the Larji-Kullu-Rampur tectonic window.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In medical imaging, merging automated segmentations obtained from multiple atlases has become a standard practice for improving the accuracy. In this letter, we propose two new fusion methods: "Global Weighted Shape-Based Averaging" (GWSBA) and "Local Weighted Shape-Based Averaging" (LWSBA). These methods extend the well known Shape-Based Averaging (SBA) by additionally incorporating the similarity information between the reference (i.e., atlas) images and the target image to be segmented. We also propose a new spatially-varying similarity-weighted neighborhood prior model, and an edge-preserving smoothness term that can be used with many of the existing fusion methods. We first present our new Markov Random Field (MRF) based fusion framework that models the above mentioned information. The proposed methods are evaluated in the context of segmentation of lymph nodes in the head and neck 3D CT images, and they resulted in more accurate segmentations compared to the existing SBA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species that differ in their social system, and thus in traits such as group size and dispersal timing, may differ in their use of resources along spatial, temporal, or dietary dimensions. The role of sociality in creating differences in habitat use is best explored by studying closely related species or socially polymorphic species that differ in their social system, but share a common environment. Here we investigate whether five sympatric Anelosimus spider species that range from nearly solitary to highly social differ in their use of space and in their phenology as a function of their social system. By studying these species in Serra do Japi, Brazil, we find that the more social species, which form larger, longer-lived colonies, tend to live inside the forest, where sturdier, longer lasting vegetation is likely to offer better support for their nests. The less social species, which form single-family groups, in contrast, tend to occur on the forest edge where the vegetation is less robust. Within these two microhabitats, species with longer-lived colonies tend to occupy the potentially more stable positions closer to the core of the plants, while those with smaller and shorter-lived colonies build their nests towards the branch tips. The species further separate in their use of common habitat due to differences in the timing of their reproductive season. These patterns of habitat use suggest that the degree of sociality can enable otherwise similar species to differ from one another in ways that may facilitate their co-occurrence in a shared environment, a possibility that deserves further consideration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the widespread availability of high-throughput sequencing technologies, sequencing projects have become pervasive in the molecular life sciences. The huge bulk of data generated daily must be analyzed further by biologists with skills in bioinformatics and by "embedded bioinformaticians," i.e., bioinformaticians integrated in wet lab research groups. Thus, students interested in molecular life sciences must be trained in the main steps of genomics: sequencing, assembly, annotation and analysis. To reach that goal, a practical course has been set up for master students at the University of Lausanne: the "Sequence a genome" class. At the beginning of the academic year, a few bacterial species whose genome is unknown are provided to the students, who sequence and assemble the genome(s) and perform manual annotation. Here, we report the progress of the first class from September 2010 to June 2011 and the results obtained by seven master students who specifically assembled and annotated the genome of Estrella lausannensis, an obligate intracellular bacterium related to Chlamydia. The draft genome of Estrella is composed of 29 scaffolds encompassing 2,819,825 bp that encode for 2233 putative proteins. Estrella also possesses a 9136 bp plasmid that encodes for 14 genes, among which we found an integrase and a toxin/antitoxin module. Like all other members of the Chlamydiales order, Estrella possesses a highly conserved type III secretion system, considered as a key virulence factor. The annotation of the Estrella genome also allowed the characterization of the metabolic abilities of this strictly intracellular bacterium. Altogether, the students provided the scientific community with the Estrella genome sequence and a preliminary understanding of the biology of this recently-discovered bacterial genus, while learning to use cutting-edge technologies for sequencing and to perform bioinformatics analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the rate of projected environmental change for the 21st century, urgent adaptation and mitigation measures are required to slow down the on-going erosion of biodiversity. Even though increasing evidence shows that recent human-induced environmental changes have already triggered species' range shifts, changes in phenology and species' extinctions, accurate projections of species' responses to future environmental changes are more difficult to ascertain. This is problematic, since there is a growing awareness of the need to adopt proactive conservation planning measures using forecasts of species' responses to future environmental changes. There is a substantial body of literature describing and assessing the impacts of various scenarios of climate and land-use change on species' distributions. Model predictions include a wide range of assumptions and limitations that are widely acknowledged but compromise their use for developing reliable adaptation and mitigation strategies for biodiversity. Indeed, amongst the most used models, few, if any, explicitly deal with migration processes, the dynamics of population at the "trailing edge" of shifting populations, species' interactions and the interaction between the effects of climate and land-use. In this review, we propose two main avenues to progress the understanding and prediction of the different processes A occurring on the leading and trailing edge of the species' distribution in response to any global change phenomena. Deliberately focusing on plant species, we first explore the different ways to incorporate species' migration in the existing modelling approaches, given data and knowledge limitations and the dual effects of climate and land-use factors. Secondly, we explore the mechanisms and processes happening at the trailing edge of a shifting species' distribution and how to implement them into a modelling approach. We finally conclude this review with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world. (c) 2007 Rubel Foundation, ETH Zurich. Published by Elsevier GrnbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Managing Football is the first book to directly respond to the rapid managerial, commercial and global development of the sport and offers a thorough analysis of how the football industry can meet the challenges that flow from these developments. Expertly edited by two well known specialists in football business management, it draws together the work of a world-class contributor team to form a comprehensive analysis of the most important issues facing the managers of football businesses across the world. The cutting edge analysis examines all the important business challenges in the football industry and the management of football businesses and covers all of the key football markets including England, Spain, France, Italy, Germany, Australia, North America, China, South Africa, South Korea, the Netherlands & Belgium, and Mexico. Managing Football is simply a must-read for anyone studying or working in football business management and is set to be an important landmark in this rapidly moving and globally expansive field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transpressional boundary between the Australian and Pacific plates in the central South Island of New Zealand comprises the Alpine Fault and a broad region of distributed strain concentrated in the Southern Alps but encompassing regions further to the east, including the northwest Canterbury Plains. Low to moderate levels of seismicity (e. g., 2 > M 5 events since 1974 and 2 > M 4.0 in 2009) and Holocene sediments offset or disrupted along rare exposed active fault segments are evidence for ongoing tectonism in the northwest plains, the surface topography of which is remarkably flat and even. Because the geology underlying the late Quaternary alluvial fan deposits that carpet most of the plains is not established, the detailed tectonic evolution of this region and the potential for larger earthquakes is only poorly understood. To address these issues, we have processed and interpreted high-resolution (2.5 m subsurface sampling interval) seismic data acquired along lines strategically located relative to extensive rock exposures to the north, west, and southwest and rare exposures to the east. Geological information provided by these rock exposures offer important constraints on the interpretation of the seismic data. The processed seismic reflection sections image a variably thick layer of generally undisturbed younger (i.e., < 24 ka) Quaternary alluvial sediments unconformably overlying an older (> 59 ka) Quaternary sedimentary sequence that shows evidence of moderate faulting and folding during and subsequent to deposition. These Quaternary units are in unconformable contact with Late Cretaceous-Tertiary interbedded sedimentary and volcanic rocks that are highly faulted, folded, and tilted. The lowest imaged unit is largely reflection-free Permian Triassic basement rocks. Quaternary-age deformation has affected all the rocks underlying the younger alluvial sediments, and there is evidence for ongoing deformation. Eight primary and numerous secondary faults as well as a major anticlinal fold are revealed on the seismic sections. Folded sedimentary and volcanic units are observed in the hanging walls and footwalls of most faults. Five of the primary faults represent plausible extensions of mapped faults, three of which are active. The major anticlinal fold is the probable continuation of known active structure. A magnitude 7.1 earthquake occurred on 4 September 2010 near the southeastern edge of our study area. This predominantly right-lateral strike-slip event and numerous aftershocks (ten with magnitudes >= 5 within one week of the main event) highlight the primary message of our paper: that the generally flat and topographically featureless Canterbury Plains is underlain by a network of active faults that have the potential to generate significant earthquakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infinite slope method is widely used as the geotechnical component of geomorphic and landscape evolution models. Its assumption that shallow landslides are infinitely long (in a downslope direction) is usually considered valid for natural landslides on the basis that they are generally long relative to their depth. However, this is rarely justified, because the critical length/depth (L/H) ratio below which edge effects become important is unknown. We establish this critical L/H ratio by benchmarking infinite slope stability predictions against finite element predictions for a set of synthetic two-dimensional slopes, assuming that the difference between the predictions is due to error in the infinite slope method. We test the infinite slope method for six different L/H ratios to find the critical ratio at which its predictions fall within 5% of those from the finite element method. We repeat these tests for 5000 synthetic slopes with a range of failure plane depths, pore water pressures, friction angles, soil cohesions, soil unit weights and slope angles characteristic of natural slopes. We find that: (1) infinite slope stability predictions are consistently too conservative for small L/H ratios; (2) the predictions always converge to within 5% of the finite element benchmarks by a L/H ratio of 25 (i.e. the infinite slope assumption is reasonable for landslides 25 times longer than they are deep); but (3) they can converge at much lower ratios depending on slope properties, particularly for low cohesion soils. The implication for catchment scale stability models is that the infinite length assumption is reasonable if their grid resolution is coarse (e.g. >25?m). However, it may also be valid even at much finer grid resolutions (e.g. 1?m), because spatial organization in the predicted pore water pressure field reduces the probability of short landslides and minimizes the risk that predicted landslides will have L/H ratios less than 25. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Le « terrane » d'Anarak-Jandak occupe une position géologique clé au nord-ouest du Microcontinent Centre-East Iranien (CE1M), connecté avec le Bloc du Grand Kavir et la ceinture métamorphique de Sanandaj-Sirjan. Nous discutons ici l'origine de ces différentes unités, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, pour conclure finalement de leur affinité paléotéthysienne. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur-Dévonien inférieur, pour se terminer au Trias par la collision des blocs Cimmériens dérivé du Gondwana avec le Bloc du Turan d'affinité asiatique (événement Eocimmérien). La plus importante unité métamorphique affleurant au sud-ouest de la région de Jandak-Anarak-Kaboudan est une épaisse séquence silicoclastique à grains fins contenant des blocs ophiolitiques (marginal-sea-type), et des associations basalte-gabbro à signatures géochimiques de type supra-subduction. Dans la région de Nakhlak, nous avons daté ces gabbros par la méthode U-Pb à 387f0.11 Ma ; les roches métamorphiques pélitiques ont donné des âges de refroidissement Ar-Ar pour la muscovite de 320 à 333 Ma. Ce complexe d'accrétion "varisque" a été métamorphisé dans le faciès schiste vert-amphibolite au cours de l'accrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma par la méthode U/Pb), qui affleure aujourd'hui à l'extrémité nord-ouest du terrane d'Anarak-Jandak . La subduction vers le nord de l'océan Paléotéthys depuis le Paléazoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de guyots (Anarak, Kaboudan, et Meraji Seamounts) et de hauts sous-marins, entrés en collision oblique avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries {âges Ar-Ar de 280 à 230 Ma). De plus, le magmatisme bimodal de Chah Gorbeh est caractérisé d'une part par des roches de type trondjémite-gabbros (262 Ma), d'autre part par des laves en coussin de type basaltes alcalins-rhyolites; ces roches magmatiques ont recoupé l'ophiolite d'Anarak lors de la mise en place de cette dernière dans la fosse interne de subduction. Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, i1 a été accrété le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge probable Triasique. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé dans les dépôts infra-arc Dévonien supérieur-Carbonifère de Godar-e-Siah, ainsi que dans la succession d'avant-arc de Nakhlak. Pendant l'intervalle Paléozoïque supérieur-Trias, la région de Jandak a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, elle-même comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites d'arc à collisionnel datés à 215±15 Ma. Dans la région de Yazd, témoin de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur; il en a été de même pour les dépôts de plate-forme Paléozoïque supérieur. L'érosion, qui dans ce dernier cas a atteint le Permien, pourrait être liée au bombement flexural de la marge passive. La collision finale n'a pas induit de déformations trop importantes, et se caractérise par la mise en place de nappes sur la marge passive. Cet événement est scellé par des dépôts molassique du Lias. D'un point de vue régional, la zone s'étendant actuellement de la Mer Noire au Pamir a été soumise à six épisodes d'extension-compression du Jurassique inférieur (début du l'ouverture en position arrière-arc de la Néotéthys) à l'Eocène moyen. Par exemple, le terrane d'AnarakJandak, probablement situé entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de sa patrie d'origine au début du Crétacé supérieur. Des preuves de cet événement se retrouvent dans les séries de plate-forme de Khur (préservation de séries syn-rift puis de marge passive). Les ophiolites de Nain et de Sabzevar sont de plus interprétée comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation par la plaque indienne de l'Eurasie a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent Iranien et de la formation du CEIM. Cette rotation est responsable du transport du terrane d'Anarak-Jandak vers sa position actuelle en Iran Central, et de la dislocation de Terranes de moindre importance, comme le bloc de Posht-e Badam. Depuis le Miocène supérieur, et à la suite de la collision entre l'Arabie et l'Iran, le ternane d'Anarak-Jandak a subi des déformations liées à l'activité d'une zone de cisaillement dextre parallèle à la suture du Zagros, à l'arrière de l'arc magmatique d'Uromieh-Dokhtar. Résumé large public Le Microcontinent Centre-Est Iranien occupe une position géologique clé au centre de l'Iran. Les différentes unités qui le composent, reliées jusqu'à présent à des épisodes orogéniques d'âge Précambrien à Paléozoïque inférieur, sont maintenant rajeunies et liés à la fermeture de l'océean Paléotéthys. Leur histoire commence par un épisode de rifting d'âge Ordovicien supérieur à Dévonien inférieur, pour se terminer au Trias par la collision des- blocs Cimmériens, dérivés du Gondwana, avec le Bloc du Turan d'affinité asiatique. Dans la marge active asiatique de la Paléotéthys, nous avons daté les restes d'un océan marginal à 387±0.11 Ma. Ce complexe d'accrétion a été métamorphisé au cours de la réaccrétion de la ceinture granitique d'Airekan, d'âge Cambrien inférieur (549±15 Ma), qui affleure aujourd'hui à l'extrémité nord-ouest du « terrane » d'Anarak-Jandak correspondant à la plus grande partie de la région étudiée. Le matériel issu de l'arc magmatique de la Paléotéthys est très bien préservé et daté du Dévonien supérieur-Carbonifère. Pendant l'intervalle Paléozoïque supérieur-Trias, la région a été soumise à un régime extensif de type bassin d'arrière-arc, dont un témoin pourrait être la ceinture ophiolitique d'Arusan, comparable aux écailles ophiolitiques d'Aghdarband au nord-est de l'Iran. Cet ensemble métamorphique est recoupé par des granites datés à 215±15 Ma. La subduction vers le nord de l'océan Paléotéthys depuis le Paléozoïque supérieur jusqu'au Trias, a permis l'accumulation de grandes quantités de matériel océanique dans la zone de subduction. Par exemple, une succession de volcans sous-marins, entrés en collision avec le prisme d'accrétion, est à l'origine d'un léger métamorphisme de type HP qui affecte ces séries (280 à 230 Ma). Quant au prisme d'accrétion de Doshakh, d'âge essentiellement Permien supérieur, il a été mis en place le long de la marge continentale et métamorphisé dans le faciès schiste vert. La fermeture de la Paléotéthys s'enregistre finalement par la sédimentation dans le bassin d'avant pays du flysch de Bayazeh, d'âge Triasique. Dans la région de Yazd, on trouve les témoins de la marge passive Cimmérienne, la sédimentation syn-rift Silurienne à Dévonienne inférieure a été interrompue pendant l'intervalle Trias moyen-Trias supérieur, marqué par la flexuration de la marge passive lorsqu'elle rentra en collision avec la marge active asiatique. Cet événement est scellé par des dépôts molassique à charbon du Lias. Le «terrane» d'Anarak-Jandak, probablement situé à l'origine entre le Kopeh Dagh et la plate-forme nord Afghane, s'est complètement détaché de cette région au début du Crétacé supérieur lors de l'ouverture d'un bassin d'arrière-arc, engendré, cette fois, par la subduction de l'océan Néotéthys situé au sud des blocs cimmériens. Des preuves de cet événement se retrouvent dans les séries syn-rift, puis de marge passive de Khour. Les ophiolites de Nain et de Sabzevar sont interprétées comme un témoin de l'existence de ce bassin d'arrière-arc. Dans l'intervalle Eocène-Oligocène, l'indentation de l'Eurasie par la plaque indienne a été contemporaine de la rotation horaire de fragments de l'ancien microcontinent centre-Iranien. Cette rotation de près de 90° est responsable du transport du « terrane » d'Anarak-Jandak vers sa position actuelle. Abstract The Anarak-Jandaq terrane occupies a strategic geological situation at the north-western part of the Central-East Iranian Microcontinent (CEIM) and in connection with the Great Kavir Block and Sanandaj-Sirjan metamorphic belt. Our recent findings redefine the origin of these mentioned areas so far attributed to the Precambrian-Early Palaeozoic orogenic episodes, to be now directly related to the tectonic evolution of the Palaeo-Tethys Ocean, commenced by Late Ordovician-Early Devonian rifting events and terminated in the Triassic by the Eocimmerian tectonic event due to the collision of the Cimmerian blocks with the Asiatic Turan block. The most distributed metamorphic unit that is exposed from the south-west of Jandaq to the Anarak and Kaboudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea-basin ophiolitic blocks including basalt-gabbro association with supra-subduction-geochemical signature. These gabbros in the Nakhlak area were dated by U/Pb method at 387.6 ± 0.11 Ma and the metamorphic pelitic rocks yielded a range of 320 to 333 Ma muscovite-cooling ages based on 40Ar/39 Ar method. This "Variscan" accretionary complex was metamorphosed in greenschist-amphibolite facies during accretion to the Lower Cambrian Airekan granitic belt (549 ± 15 Ma by U/Pb method) that crops out at the northwestern edge of the Anarak-Jandaq terrane. Continued northward subduction of the Palaeo-Tethys Ocean during the entire Late Palaeozoic-Middle Triassic brought huge amount of oceanic material to the subduction zone. One chain of Carboniferous-Triassic oceanic rises and seamounts (the Anarak, Kaboudan, and Meraji Seamounts) obliquely collided with the accretionary wedge and created a mild HP metamorphic event (280-230 Ma based on 40Ar/39Ar results). Bimodal magmatism of the Chah Gorbeh area is characterized by a 262 Ma trondjemite-gabbro as well as pillow alkalibasalts-rhyolites which intruded the Anarak ophiolite when it was being emplaced within the inner-wall trench. The mainly Late Permian-Triassic Doshakh wedge was accreted along the continent and metamorphosed under lower greenschist facies and the probable Triassic Bayazeh flysch filled the foreland basin during the final closure. The Palaeo-Tethys magmatic arc products have been well preserved in the Late Devonian-Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. During the Late Palaeozoic-Triassic times, the Jandaq area has been affected by back-arc extension and probably the Arusan ophiolitic belt is the remnant of this narrow basin comparable to the Aqdarband ophiolitic remnant in north-east Iran. This metamorphic belt was intruded by 215 ± 15 Ma arc to collisional granites. In the passive margin of the Cimmerian block, on the Yazd region, the Silurian-Early Devonian syn-rift succession as well as the nearly continuous Upper Palaeozoic platform-type deposition was interrupted during the Middle to Late Triassic time, local erosion down to Devonian levels may be related to flexural bulge erosion. The collision event was not so strong to generate intensive deformation but was accompanied by some nappe thrusting onto the passive margin. It is finally unconformably covered by Liassic continental molassic deposits. Related to the onset of Neo-Tethyan back-arc opening in Early Jurassic to Mid-Eocene times, six periods of extensional-compressional events have differently influenced an elongated area, extending from the West Black Sea to Pamir. The Anarak-Jandaq terrane which was situated somewhere in this affected area, probably between the Kopeh Dagh and North Afghan platform, was completely detached from its source at the beginning of the Late Cretaceous

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Vascular reconstructions are becoming challenging due to the comorbidity of the aging population and since the introduction of minimally invasive approaches. Many sutureless anastomosis devices have been designed to facilitate the cardiovascular surgeon's work and the vascular join (VJ) is one of these. We designed an animal study to assess its reliability and long-term efficacy. METHODS: VJ allows the construction of end-to-end and end-to-side anastomoses. It consists of two metallic crowns fixed to the extremity of the two conduits so that vessel edges are joined layer by layer. There is no foreign material exposed to blood. In adult sheep both carotid arteries were prepared and severed. End-to-end anastomoses were performed using the VJ device on one side and the classical running suture technique on the other side. Animals were followed-up with Duplex-scan every 3 months and sacrificed after 12 months. Histopathological analysis was carried out. RESULTS: In 20 animals all 22 sutureless anastomoses were successfully completed in less than 2 min versus 6 +/- 3 min for running suture. Duplex showed the occlusion of three controls and one sutureless anastomosis. Two controls and one sutureless had stenosis >50%. Histology showed very thin layer of myointimal hyperplasia (50 +/- 10 microm) in the sutureless group versus 300 +/- 27 microm in the control. No significant inflammatory reaction was detected. CONCLUSIONS: VJ provides edge-to-edge vascular repair that can be considered the most physiological way to restore vessel continuity. For the first time, in healthy sheep, an anastomotic device provided better results than suture technique.