55 resultados para Grid-based clustering approach
Resumo:
Simulated-annealing-based conditional simulations provide a flexible means of quantitatively integrating diverse types of subsurface data. Although such techniques are being increasingly used in hydrocarbon reservoir characterization studies, their potential in environmental, engineering and hydrological investigations is still largely unexploited. Here, we introduce a novel simulated annealing (SA) algorithm geared towards the integration of high-resolution geophysical and hydrological data which, compared to more conventional approaches, provides significant advancements in the way that large-scale structural information in the geophysical data is accounted for. Model perturbations in the annealing procedure are made by drawing from a probability distribution for the target parameter conditioned to the geophysical data. This is the only place where geophysical information is utilized in our algorithm, which is in marked contrast to other approaches where model perturbations are made through the swapping of values in the simulation grid and agreement with soft data is enforced through a correlation coefficient constraint. Another major feature of our algorithm is the way in which available geostatistical information is utilized. Instead of constraining realizations to match a parametric target covariance model over a wide range of spatial lags, we constrain the realizations only at smaller lags where the available geophysical data cannot provide enough information. Thus we allow the larger-scale subsurface features resolved by the geophysical data to have much more due control on the output realizations. Further, since the only component of the SA objective function required in our approach is a covariance constraint at small lags, our method has improved convergence and computational efficiency over more traditional methods. Here, we present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on a synthetic data set, and then applied to data collected at the Boise Hydrogeophysical Research Site.
Resumo:
We present a new global method for the identification of hotspots in conservation and ecology. The method is based on the identification of spatial structure properties through cumulative relative frequency distributions curves, and is tested with two case studies, the identification of fish density hotspots and terrestrial vertebrate species diversity hotspots. Results from the frequency distribution method are compared with those from standard techniques among local, partially local and global methods. Our approach offers the main advantage to be independent from the selection of any threshold, neighborhood, or other parameter that affect most of the currently available methods for hotspot analysis. The two case studies show how such elements of arbitrariness of the traditional methods influence both size and location of the identified hotspots, and how this new global method can be used for a more objective selection of hotspots.
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
DNA is nowadays swabbed routinely to investigate serious and volume crimes, but research remains scarce when it comes to determining the criteria that may impact the success rate of DNA swabs taken on different surfaces and situations. To investigate these criteria in fully operational conditions, DNA analysis results of 4772 swabs taken by the forensic unit of a police department in Western Switzerland over a 2.5-year period (2012-2014) in volume crime cases were considered. A representative and random sample of 1236 swab analyses was extensively examined and codified, describing several criteria such as whether the swabbing was performed at the scene or in the lab, the zone of the scene where it was performed, the kind of object or surface that was swabbed, whether the target specimen was a touch surface or a biological fluid, and whether the swab targeted a single surface or combined different surfaces. The impact of each criterion and of their combination was assessed in regard to the success rate of DNA analysis, measured through the quality of the resulting profile, and whether the profile resulted in a hit in the national database or not. Results show that some situations - such as swabs taken on door and window handles for instance - have a higher success rate than average swabs. Conversely, other situations lead to a marked decrease in the success rate, which should discourage further analyses of such swabs. Results also confirm that targeting a DNA swab on a single surface is preferable to swabbing different surfaces with the intent to aggregate cells deposited by the offender. Such results assist in predicting the chance that the analysis of a swab taken in a given situation will lead to a positive result. The study could therefore inform an evidence-based approach to decision-making at the crime scene (what to swab or not) and at the triage step (what to analyse or not), contributing thus to save resource and increase the efficiency of forensic science efforts.
Resumo:
Despite moderate improvements in outcome of glioblastoma after first-line treatment with chemoradiation recent clinical trials failed to improve the prognosis of recurrent glioblastoma. In the absence of a standard of care we aimed to investigate institutional treatment strategies to identify similarities and differences in the pattern of care for recurrent glioblastoma. We investigated re-treatment criteria and therapeutic pathways for recurrent glioblastoma of eight neuro-oncology centres in Switzerland having an established multidisciplinary tumour-board conference. Decision algorithms, differences and consensus were analysed using the objective consensus methodology. A total of 16 different treatment recommendations were identified based on combinations of eight different decision criteria. The set of criteria implemented as well as the set of treatments offered was different in each centre. For specific situations, up to 6 different treatment recommendations were provided by the eight centres. The only wide-range consensus identified was to offer best supportive care to unfit patients. A majority recommendation was identified for non-operable large early recurrence with unmethylated MGMT promoter status in the fit patients: here bevacizumab was offered. In fit patients with late recurrent non-operable MGMT promoter methylated glioblastoma temozolomide was recommended by most. No other majority recommendations were present. In the absence of strong evidence we identified few consensus recommendations in the treatment of recurrent glioblastoma. This contrasts the limited availability of single drugs and treatment modalities. Clinical situations of greatest heterogeneity may be suitable to be addressed in clinical trials and second opinion referrals are likely to yield diverging recommendations.
Resumo:
The extension of traditional data mining methods to time series has been effectively applied to a wide range of domains such as finance, econometrics, biology, security, and medicine. Many existing mining methods deal with the task of change points detection, but very few provide a flexible approach. Querying specific change points with linguistic variables is particularly useful in crime analysis, where intuitive, understandable, and appropriate detection of changes can significantly improve the allocation of resources for timely and concise operations. In this paper, we propose an on-line method for detecting and querying change points in crime-related time series with the use of a meaningful representation and a fuzzy inference system. Change points detection is based on a shape space representation, and linguistic terms describing geometric properties of the change points are used to express queries, offering the advantage of intuitiveness and flexibility. An empirical evaluation is first conducted on a crime data set to confirm the validity of the proposed method and then on a financial data set to test its general applicability. A comparison to a similar change-point detection algorithm and a sensitivity analysis are also conducted. Results show that the method is able to accurately detect change points at very low computational costs. More broadly, the detection of specific change points within time series of virtually any domain is made more intuitive and more understandable, even for experts not related to data mining.
Resumo:
The Argentina National Road 7 that crosses the Andes Cordillera within the Mendoza province to connect Santiago de Chile and Buenos Aires is particularly affected by natural hazards requiring risk management. Integrated in a research plan that intends to produce landslide susceptibility maps, we aimed in this study to detect large slope movements by applying a satellite radar interferometric analysis using Envisat data, acquired between 2005 and 2010. We were finally able to identify two large slope deformations in sandstone and clay deposits along gentle shores of the Potrerillos dam reservoir, with cumulated displacements higher than 25mm in 5years and towards the reservoir. There is also a body of evidences that these large slope deformations are actually influenced by the seasonal reservoir level variations. This study shows that very detailed information, such as surface displacements and above all water level variation, can be extracted from spaceborne remote sensing techniques; nevertheless, the limitations of InSAR for the present dataset are discussed here. Such analysis can then lead to further field investigations to understand more precisely the destabilising processes acting on these slope deformations.