150 resultados para Genetic population data


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The population genetic structure of a parasite, and consequently its ability to adapt to a given host, is strongly linked to its own life history as well as the life history of its host. While the effects of parasite life history on their population genetic structure have received some attention, the effect of host social system has remained largely unstudied. In this study, we investigated the population genetic structure of two closely related parasitic mite species (Spinturnix myoti and Spinturnix bechsteini) with very similar life histories. Their respective hosts, the greater mouse-eared bat (Myotis myotis) and the Bechstein's bat (Myotis bechsteinii) have social systems that differ in several substantial features, such as group size, mating system and dispersal patterns. RESULTS: We found that the two mite species have strongly differing population genetic structures. In S. myoti we found high levels of genetic diversity and very little pairwise differentiation, whereas in S. bechsteini we observed much less diversity, strongly differentiated populations and strong temporal turnover. These differences are likely to be the result of the differences in genetic drift and dispersal opportunities afforded to the two parasites by the different social systems of their hosts. CONCLUSIONS: Our results suggest that host social system can strongly influence parasite population structure. As a result, the evolutionary potential of these two parasites with very similar life histories also differs, thereby affecting the risk and evolutionary pressure exerted by each parasite on its host.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Retinitis pigmentosa and other hereditary retinal degenerations (HRD) are rare genetic diseases leading to progressive blindness. Recessive HRD are caused by mutations in more than 100 different genes. Laws of population genetics predict that, on a purely theoretical ground, such a high number of genes should translate into an extremely elevated frequency of unaffected carriers of mutations. In this study we estimate the proportion of these individuals within the general population, via the analyses of data from whole-genome sequencing. METHODOLOGY/PRINCIPAL FINDINGS: We screened complete and high-quality genome sequences from 46 control individuals from various world populations for HRD mutations, using bioinformatic tools developed in-house. All mutations detected in silico were validated by Sanger sequencing. We identified clear-cut, null recessive HRD mutations in 10 out of the 46 unaffected individuals analyzed (∼22%). CONCLUSIONS/SIGNIFICANCE: Based on our data, approximately one in 4-5 individuals from the general population may be a carrier of null mutations that are responsible for HRD. This would be the highest mutation carrier frequency so far measured for a class of Mendelian disorders, especially considering that missenses and other forms of pathogenic changes were not included in our assessment. Among other things, our results indicate that the risk for a consanguineous couple of generating a child with a blinding disease is particularly high, compared to other genetic conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Although smokers tend to have a lower body-mass index than non-smokers, smoking may favour abdominal body fat accumulation. To our knowledge, no population-based studies have assessed the relationship between smoking and body fat composition. We assessed the association between cigarette smoking and waist circumference, body fat, and body-mass index. METHODS: Height, weight, and waist circumference were measured among 6,123 Caucasians (ages 35-75) from a cross-sectional population-based study in Switzerland. Abdominal obesity was defined as waist circumference>=102 cm for men and >=88 cm for women. Body fat (percent total body weight) was measured by electrical bioimpedance. Age- and sex-specific body fat cut-offs were used to define excess body fat. Cigarettes smoked per day were assessed by self-administered questionnaire. Age-adjusted means and odds ratios were calculated using linear and logistic regression. RESULTS: Current smokers (29% of men and 24% of women) had lower mean waist circumference, body fat percentage, and body-mass index compared with non-smokers. Age-adjusted mean waist circumference and body fat increased with cigarettes smoked per day among smokers. The association between cigarettes smoked per day and body-mass index was non-significant. Compared with light smokers, the adjusted odds ratio (OR) for abdominal obesity in men was 1.28 (0.78-2.10) for moderate smokers and 1.94 (1.15-3.27) for heavy smokers (P=0.03 for trend), and 1.07 (0.72-1.58) and 2.15 (1.26-3.64) in female moderate and heavy smokers, respectively (P<0.01 for trend). Compared with light smokers, the OR for excess body fat in men was 1.05 (95% CI: 0.58-1.92) for moderate smokers and 1.15 (0.60-2.20) for heavy smokers (P=0.75 for trend) and 1.34 (0.89-2.00) and 2.11 (1.25-3.57), respectively in women (P=0.07 for trend). CONCLUSION: Among smokers, cigarettes smoked per day were positively associated with central fat accumulation, particularly in women.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SUMMARY : The coevolution between two intimately associated organisms, like host and parasite, is a widely investigated theme in evolutionary biology. Recently, the use of genetic data in the study of host-parasite systems evidences that the genetic information from some parasites can complement genetic data from their hosts and thus may help to better understand their host's evolutionary history. Phylogenetic and population genetic aspects of bat parasites have been poorly investigated. Spinturnicid mites are highly specialized ectoparasites, exclusively associated with bats and therefore represent an ideal model to extant our knowledge on bat and parasite biology and on their coevolutionary history. In this thesis, I developed several molecular markers (mitochondrial DNA) to compare the genetic patterns of Spinturnix mites with their bat hosts at different levels. The molecular co-phylogeny between Spinturnix sp. and their bat hosts suggests a partial cospeciation and the occurrence of failure to speciate events and multiple host switches. Thus, Spinturnix mites do not exactly mirror the phylogenetic pattern of their hosts, despite their intimate association. Similar roosting habits of the hosts seem to promote host switches between different species, as far as ecological conditions are favourable. The phylogeographic study of the Maghrebian bat M. punicus in the Mediterranean area confirms the presence of M. punicus in North Africa, Corsica and Sardinia and highlights that islands and mainland are genetically highly divergent. The comparison between the parasitic mite S. myoti and the Maghrebian bat suggests that the phylogeographic pattern of the mite is moulded by its host, with open water as main barrier for host and parasite dispersal. Moreover, the unique presence of a European S. myoti lineage on M. punicus from Corsica strongly suggests the former presence of mouse-eared bats (M. myotis and/or M. blythii) in Corsica. By highlighting the probable presence of a nowadays locally extinct host species, S. myoti may represent a good proxy for inferring complex evolutionary history of bat hosts. Finally, population genetic surveys of S. myoti and S. bechsteinii suggest that these mites benefit from close contacts between individuals during the mating season and/or hibernation to disperse among remote colonies. The contrasted genetic patterns of these two distinct bat-mite systems evidence that bat social structure is a determinant factor of the genetic structure of mite populations. Altogether, this PhD thesis demonstrates the usefulness of parasites to gather information about their bat hosts. In addition, my results illustrate how different ecological and biological characteristics of bat species allow the emergence of a surprising diversity in the genetic patterns of the parasites, which may contribute to the diversification and speciation of parasites. RESUME : La co-évolution entre deux organismes intimement liés, comme un parasite et son hôte, fait partie des questions largement étudiées en biologie évolutive. Récemment, l'utilisation de données génétique dans l'étude des interactions hôte-parasite a montré que l'information génétique de certains parasites peut compléter les données génétiques de l'hôte et ainsi peut éclairer l'histoire évolutive de leur hôte. Très peu études ont étudié les interactions entre les chauves-souris et leurs parasites d'un point de vue moléculaire. Les acariens du genre Spinturnix sont des ectoparasites très spécialisés exclusivement associés aux chauves-souris. Ils représentent donc un model idéal pour élargir nos connaissances tant sur l'écologie des parasites de chauves-souris que sur leur coévolution. Durant cette thèse, plusieurs marqueurs moléculaires (ADN mitochondrial) ont été développés pour ainsi comparer la distribution de la variation génétique des parasites du genre Spinturnix avec celle de leurs hôtes, et ceci à différents niveaux. Tout d'abord, la co-phylogénie moléculaire entre les espèces de Spinturnix et les leurs hôtes révèle une co-spéciation partielle ainsi que la présence d'événement de non spéciation et de transferts horizontaux. Ces parasites ne reflètent donc pas entièrement l'histoire évolutive de leurs hôtes, malgré leurs intimes associations. La cohabitation de plusieurs espèces de chauves-souris dans un même gîte permet aux parasites un transfert entre différentes espèces, atténuant ainsi leur degré de co-spéciation. Deuxièmement, l'étude phylogéographique du marin du Maghreb dans le bassin Méditerranéen confirme sa présence en Afrique du Nord, en Corse et en Sardaigne. La comparaison avec un de ses parasites S. myoti suggère que la répartition génétique de S. myoti est façonnée par celle de leurs hôtes, avec les étendues d'eau comme barrière principale tant à la dispersion de l'hôte que de son parasite. De plus, la présence unique d'une lignée européenne de ces parasites sur des marins du Maghreb de Corse suggère fortement la présence du grand ou petit marin en Corse dans le passé. En reflétant la présence potentielle à un endroit donné d'une espèce de chauve-souris actuellement disparue, S. myoti peut représenter une bonne alternative pour comprendre l'histoire évolutive complexe des chauves-souris. Finalement, l'étude des structures génétiques des populations des parasites S. myoti et S. bechsteinii suggère que les contacts corporels entre chauves-souris durant la saison de reproduction ou l'hibernation peuvent permettre la dispersion des parasites entre des colonies éloignées géographiquement. La différence de structure génétique entre ces deux associations particulières montre que la structure génétique des populations de parasites dépend fortement des traits d'histoire de vie de son hôte. Dans l'ensemble, cette thèse démontre l'importance des parasites pour amener des informations sur leurs hôtes, les chauves-souris. Elle illustre aussi comment les différences écologique et biologique des différentes espèces de chauves-souris peuvent amener une étonnante diversité de structure génétique au sein de populations de parasites, ce qui peut peut-être contribuer à la diversification et à la spéciation des parasites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetic determinants of blood pressure are poorly defined. We undertook a large-scale, gene-centric analysis to identify loci and pathways associated with ambulatory systolic and diastolic blood pressure. We measured 24-hour ambulatory blood pressure in 2020 individuals from 520 white European nuclear families (the Genetic Regulation of Arterial Pressure of Humans in the Community Study) and genotyped their DNA using the Illumina HumanCVD BeadChip array, which contains ≈50 000 single nucleotide polymorphisms in >2000 cardiovascular candidate loci. We found a strong association between rs13306560 polymorphism in the promoter region of MTHFR and CLCN6 and mean 24-hour diastolic blood pressure; each minor allele copy of rs13306560 was associated with 2.6 mm Hg lower mean 24-hour diastolic blood pressure (P=1.2×10(-8)). rs13306560 was also associated with clinic diastolic blood pressure in a combined analysis of 8129 subjects from the Genetic Regulation of Arterial Pressure of Humans in the Community Study, the CoLaus Study, and the Silesian Cardiovascular Study (P=5.4×10(-6)). Additional analysis of associations between variants in gene ontology-defined pathways and mean 24-hour blood pressure in the Genetic Regulation of Arterial Pressure of Humans in the Community Study showed that cell survival control signaling cascades could play a role in blood pressure regulation. There was also a significant overrepresentation of rare variants (minor allele frequency: <0.05) among polymorphisms showing at least nominal association with mean 24-hour blood pressure indicating that a considerable proportion of its heritability may be explained by uncommon alleles. Through a large-scale gene-centric analysis of ambulatory blood pressure, we identified an association of a novel variant at the MTHFR/CLNC6 locus with diastolic blood pressure and provided new insights into the genetic architecture of blood pressure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SUMMARYIn the context of the biodiversity crisis, amphibians are experiencing the most severe worldwide decline of all vertebrates and are in urgent need of better management. Efficient conservation strategies rely on sound knowledge of the species biology and of the genetic and demographic processes that might impair their welfare. Nonetheless, these processes are poorly understood in amphibians. Delineating population boundaries remains consequently problematic for these species, while it is of critical importance to define adequate management units for conservation. In this study, our attention focused on the alpine salamander (Salamandra atra), a species that deserves much interest in terms of both conservation biology and evolution. This endemic alpine species shows peculiar life-history traits (viviparity, reduced activity period, slow maturation) and has a slow population turnover, which might be problematic for its persistence in a changing environment. Due to its elusive behaviour (individuals spend most of their time underground and are unavailable for sampling), dynamic processes of gene and individuals were poorly understood for that species. Consequently, its conservation status could hardly be reliably assessed. Similarly the fire salamander (Salamandra salamandra) also poses special challenges for conservation, as no clear demarcation of geographical populations exists and dispersal patterns are poorly known. Through a phylogeographic analysis, we first studied the evolutionary history of the alpine salamander to better document the distribution of the genetic diversity along its geographical range. This study highlighted the presence of multiple divergent lineages in Italy together with a clear genetic divergence between populations from Northern and Dinaric Alps. These signs of cryptic genetic differentiation, which are not accounted for by the current taxonomy of the species, should not be neglected for further definition of conservation units. In addition, our data supported glacial survival of the species in northern peripheral glacial réfugia and nunataks, a pattern rarely documented for long-lived species. Then, we evaluated the level of gene flow between populations at the local scale and tested for asymmetries in male versus female dispersal using both field-based (mark-recapture) and genetic approaches. This study revealed high level of gene flow between populations, which stems mainly from male dispersal. This corroborated the idea that salamanders are much better dispersers than hitherto thought and provided a well- supported example of male-biased dispersal in amphibians. In a third step, based on a mark- recapture survey, we addressed the problem of sampling unavailability in alpine salamanders and evaluated its impact on two monitoring methods. We showed that about three quarters of individuals were unavailable for sampling during sampling sessions, a proportion that can vary with climatic conditions. If not taken into account, these complexities would result in false assumptions on population trends and misdirect conservation efforts. Finally, regarding the daunting task of delineating management units, our attention was drawn on the fire salamander. We conducted a local population genetic study that revealed high levels of gene flow among sampling sites. Management units for this species should consequently be large. Interestingly, despite the presence of several landscape features often reported to act as barriers, genetic breaks occurred at unexpected places. This suggests that landscape features may rather have idiosyncratic effects on population structure. In conclusion, this work brought new insights on both genetic and demographic processes occurring in salamanders. The results suggest that some biological paradigms should be taken with caution when particular species are in focus. Species- specific studies remain thus fundamental for a better understanding of species evolution and conservation, particularly in the context of current global changes.RESUMEDans le contexte de la crise de la biodiversité actuelle, les amphibiens subissent le déclin le plus important de tous les vertébrés et ont urgemment besoin d'une meilleure protection. L'établissement de stratégies de conservation efficaces repose sur des connaissances solides de la biologie des espèces et des processus génétiques et démographiques pouvant menacer leur survie. Ces processus sont néanmoins encore peu étudiés chez les amphibiens.Dans cette étude, notre attention s'est portée sur la salamandre noire (Salamandra atra), une espèce endémique des Alpes dont les traits d'histoire de vie atypiques (viviparité, phase d'activité réduite, lent turnover des populations) pourraient la rendre très vulnérable face aux changements environnementaux. Par ailleurs, en raison de son comportement cryptique (les individus passent la plupart de leur temps sous terre) la dynamique des gènes et des individus est mal comprise chez cette espèce. Il est donc difficile d'évaluer son statut de conservation de manière fiable. La salamandre tachetée {Salamandra salamandra), pour qui il n'existe aucune démarcation géographique apparente des populations, pose également des problèmes en termes de gestion. Dans un premier temps, nous avons étudié l'histoire évolutive de la salamandre noire afin de mieux décrire la distribution de sa diversité génétique au sein de son aire géographique. Cela a permis de mettre en évidence la présence de multiples lignées en Italie, ainsi qu'une nette divergence entre les populations du nord des Alpes et des Alpes dinariques. Ces résultats seront à prendre en compte lorsqu'il s'agira de définir des unités de conservation pour cette espèce. D'autre part, nos données soutiennent l'hypothèse d'une survie glaciaire dans des refuges nordiques périglaciaires ou dans des nunataks, fait rarement documenté pour une espèce longévive. Nous avons ensuite évalué la différentiation génétique des populations à l'échelle locale, ce qui a révélé d'important flux de gènes, ainsi qu'une asymétrie de dispersion en faveur des mâles. Ces résultats corroborent l'idée que les amphibiens dispersent mieux que ce que l'on pensait, et fournissent un exemple robuste de dispersion biaisée en faveur des mâles chez les amphibiens. Nous avons ensuite abordé le problème de Γ inaccessibilité des individus à la capture. Nous avons montré qu'environ trois quarts des individus sont inaccessibles lors des échantillonnages, une proportion qui peut varier en fonction des conditions climatiques. Ignoré, ce processus pourrait entraîner une mauvaise interprétation des fluctuations de populations ainsi qu'une mauvaise allocation des efforts de conservation. Concernant la définition d'unités de gestion pour la salamandre tachetée, nous avons pu mettre en évidence un flux de gènes important entre les sites échantillonnés. Les unités de gestion pour cette espèce devraient donc être étendues. Etonnamment, malgré la présence de nombreuses barrières potentielles au flux de gènes, les démarcations génétiques sont apparues à des endroits inattendus. En conclusion, ce travail a apporté une meilleure compréhension des processus génétiques et démographiques en action chez les salamandres. Les résultats suggèrent que certains paradigmes biologiques devraient être considérés avec précaution quand il s'agit de les appliquer à des espèces particulières. Les études spécifiques demeurent donc fondamentales pour une meilleure compréhension de l'évolution des espèces et leur conservation, tout particulièrement dans le contexte des changements globaux actuels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental variation, phylogeographic history, and population demographic processes all contribute to spatially structured genetic variation, however few current models attempt to separate these confounding effects. To illustrate the benefits of using a spatially-explicit model for identifying potentially adaptive loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi-scale spatial variation present in a data set, were incorporated into a landscape genetic approach relating AFLP frequencies with 23 environmental variables. Four major findings emerged. 1) Fifteen loci were significantly correlated with at least one predictor variable (R (adj) (2) > 0.5). 2) Models including PCNM variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major environmental factors driving potentially adaptive genetic variation in G. nivalis. Techniques presented in this paper offer an efficient method for identifying potentially adaptive genetic variation and associated environmental forces of selection, providing an important step forward for the conservation of non-model species under global change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Recently, genetic variations in MICA (lead single nucleotide polymorphism [SNP] rs2596542) were identified by a genome-wide association study (GWAS) to be associated with hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC) in Japanese patients. In the present study, we sought to determine whether this SNP is predictive of HCC development in the Caucasian population as well. METHODS: An extended region around rs2596542 was genotyped in 1924 HCV-infected patients from the Swiss Hepatitis C Cohort Study (SCCS). Pair-wise correlation between key SNPs was calculated both in the Japanese and European populations (HapMap3: CEU and JPT). RESULTS: To our surprise, the minor allele A of rs2596542 in proximity of MICA appeared to have a protective impact on HCC development in Caucasians, which represents an inverse association as compared to the one observed in the Japanese population. Detailed fine-mapping analyses revealed a new SNP in HCP5 (rs2244546) upstream of MICA as strong predictor of HCV-related HCC in the SCCS (univariable p=0.027; multivariable p=0.0002, odds ratio=3.96, 95% confidence interval=1.90-8.27). This newly identified SNP had a similarly directed effect on HCC in both Caucasian and Japanese populations, suggesting that rs2244546 may better tag a putative true variant than the originally identified SNPs. CONCLUSIONS: Our data confirms the MICA/HCP5 region as susceptibility locus for HCV-related HCC and identifies rs2244546 in HCP5 as a novel tagging SNP. In addition, our data exemplify the need for conducting meta-analyses of cohorts of different ethnicities in order to fine map GWAS signals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The European Surveillance of Congenital Anomalies (EUROCAT) network of population-based congenital anomaly registries is an important source of epidemiologic information on congenital anomalies in Europe covering live births, fetal deaths from 20 weeks gestation, and terminations of pregnancy for fetal anomaly. EUROCAT's policy is to strive for high-quality data, while ensuring consistency and transparency across all member registries. A set of 30 data quality indicators (DQIs) was developed to assess five key elements of data quality: completeness of case ascertainment, accuracy of diagnosis, completeness of information on EUROCAT variables, timeliness of data transmission, and availability of population denominator information. This article describes each of the individual DQIs and presents the output for each registry as well as the EUROCAT (unweighted) average, for 29 full member registries for 2004-2008. This information is also available on the EUROCAT website for previous years. The EUROCAT DQIs allow registries to evaluate their performance in relation to other registries and allows appropriate interpretations to be made of the data collected. The DQIs provide direction for improving data collection and ascertainment, and they allow annual assessment for monitoring continuous improvement. The DQI are constantly reviewed and refined to best document registry procedures and processes regarding data collection, to ensure appropriateness of DQI, and to ensure transparency so that the data collected can make a substantial and useful contribution to epidemiologic research on congenital anomalies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obesity is of global health concern. There are well-described inverse relationships between female pubertal timing and obesity. Recent genome-wide association studies of age at menarche identified several obesity-related variants. Using data from the ReproGen Consortium, we employed meta-analytical techniques to estimate the associations of 95 a priori and recently identified obesity-related (body mass index (weight (kg)/height (m)(2)), waist circumference, and waist:hip ratio) single-nucleotide polymorphisms (SNPs) with age at menarche in 92,116 women of European descent from 38 studies (1970-2010), in order to estimate associations between genetic variants associated with central or overall adiposity and pubertal timing in girls. Investigators in each study performed a separate analysis of associations between the selected SNPs and age at menarche (ages 9-17 years) using linear regression models and adjusting for birth year, site (as appropriate), and population stratification. Heterogeneity of effect-measure estimates was investigated using meta-regression. Six novel associations of body mass index loci with age at menarche were identified, and 11 adiposity loci previously reported to be associated with age at menarche were confirmed, but none of the central adiposity variants individually showed significant associations. These findings suggest complex genetic relationships between menarche and overall obesity, and to a lesser extent central obesity, in normal processes of growth and development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hypothesis of ecological divergence giving rise to premating isolation in the face of gene flow is controversial. However, this may be an important mechanism to explain the rapid multiplication of species during adaptive radiation following the colonization of a new environment when geographical barriers to gene flow are largely absent but underutilized niche space is abundant. Using cichlid fish, we tested the prediction of ecological speciation that the strength of premating isolation among species is predicted by phenotypic rather than genetic distance. We conducted mate choice experiments between three closely related, sympatric species of a recent radiation in Lake Mweru (Zambia/DRC) that differ in habitat use and phenotype, and a distantly related population from Lake Bangweulu that resembles one of the species in Lake Mweru. We found significant assortative mating among all closely related, sympatric species that differed phenotypically, but none between the distantly related allopatric populations of more similar phenotype. Phenotypic distance between species was a good predictor of the strength of premating isolation, suggesting that assortative mating can evolve rapidly in association with ecological divergence during adaptive radiation. Our data also reveals that distantly related allopatric populations that have not diverged phenotypically, may hybridize when coming into secondary contact, e.g. upon river capture because of diversion of drainage systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is widely accepted that the rate of evolution (substitution rate) at neutral genes is unaffected by population size fluctuations. This result has implications for the analysis of genetic data in population genetics and phylogenetics, and provides, in particular, a justification for the concept of the molecular clock. Here, we show that the substitution rate at neutral genes does depend on population size fluctuations in the presence of overlapping generations. As both population size fluctuations and overlapping generations are expected to be the norm rather than the exception in natural populations, this observation may be relevant for understanding variation in substitution rates within and between lineages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetic diversity is the amount of variation observed between DNA sequences from distinct individuals of a given species. This pivotal concept of population genetics has implications for species health, domestication, management and conservation. Levels of genetic diversity seem to vary greatly in natural populations and species, but the determinants of this variation, and particularly the relative influences of species biology and ecology versus population history, are still largely mysterious. Here we show that the diversity of a species is predictable, and is determined in the first place by its ecological strategy. We investigated the genome-wide diversity of 76 non-model animal species by sequencing the transcriptome of two to ten individuals in each species. The distribution of genetic diversity between species revealed no detectable influence of geographic range or invasive status but was accurately predicted by key species traits related to parental investment: long-lived or low-fecundity species with brooding ability were genetically less diverse than short-lived or highly fecund ones. Our analysis demonstrates the influence of long-term life-history strategies on species response to short-term environmental perturbations, a result with immediate implications for conservation policies.