114 resultados para Genetic Technologies Limited


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While genetic polymorphisms play a paramount role in tuberculosis (TB), less is known about their contribution to the severity of diseases caused by other intracellular bacteria and fastidious microorganisms. We searched electronic databases for observational studies reporting on host factors and genetic predisposition to infections caused by intracellular fastidious bacteria published up to 30 May 2014. The contribution of genetic polymorphisms was documented for TB. This includes genetic defects in the mononuclear phagocyte/T helper cell type 1 (Th1) pathway contributing to disseminated TB disease in children and genome-wide linkage analysis (GWAS) in reactivated pulmonary TB in adults. Similarly, experimental studies supported the role of host genetic factors in the clinical presentation of illnesses resulting from other fastidious intracellular bacteria. These include IL-6 -174G/C or low mannose-binding (MBL) polymorphisms, which are incriminated in chronic pulmonary conditions triggered by C. pneumoniae, type 2-like cytokine secretion polymorphisms, which are correlated with various clinical patterns of M. pneumoniae infections, and genetic variation in the NOD2 gene, which is an indicator of tubal pathology resulting from Chamydia trachomatis infections. Monocyte/macrophage migration and T lymphocyte recruitment defects are corroborated to ineffective granuloma formation observed among patients with chronic Q fever. Similar genetic polymorphisms have also been suggested for infections caused by T. whipplei although not confirmed yet. In conclusion, this review supports the paramount role of genetic factors in clinical presentations and severity of infections caused by intracellular fastidious bacteria. Genetic predisposition should be further explored through such as exome sequencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methicillin resistant Staphylococcus aureus (MRSA) bacteria have emerged in the early 1980's in numerous health care institutions around the world. The main transmission mechanism within hospitals and healthcare facilities is through the hands of health care workers. Resistant to several antibiotics, the MRSA is one of the most feared pathogens in the hospital setting since it is very difficult to eradicate with the standard treatments. There are still a limited number of anti-MRSA antibiotics but the first cases of resistance to these compounds have already been reported and their frequency is likely to increase in the coming years. Every year, the MRSA infections result in major human and financial costs, due to the high associated mortality and expenses related to the required care. Measures towards a faster detection of resistant bacteria and establishment of appropriate antibiotic treatment parameters are fundamental. Also as part as infection prevention, diminution of bacteria present on the commonly touched surfaces could also limit the spread and selection of antibiotic resistant bacteria. During my thesis, projects were developed around MRSA and antibiotic resistance investigation using innovative technologies. The thesis was subdivided in three main parts with the use of atomic force microscopy AFM for antibiotic resistance detection in part 1, the importance of the bacterial inoculum size in the selection of antibiotic resistance in part 2 and the testing of antimicrobial surfaces creating by sputtering copper onto polyester in part 3. In part 1 the AFM was used two different ways, first for the measurement of stiffness (elasticity) of bacteria and second as a nanosensor for antibiotic susceptibility testing. The stiffness of MRSA with different susceptibility profiles to vancomycin was investigated using the stiffness tomography mode of the AFM and results have demonstrated and increased stiffness in the vancomycin resistant strains that also paralleled with increased thickness of the bacterial cell wall. Parts of the AFM were also used to build a new antibiotic susceptibility-testing device. This nano sensor was able to measure vibrations emitted from living bacteria that ceased definitively upon antibiotic exposure to which they were susceptible but restarted after antibiotic removal to which they were resistant, allowing in a matter of minute the assessment of antibiotic susceptibility determination. In part 2 the inoculum effect (IE) of vancomycin, daptomycin and linezolid and its importance in antibiotic resistance selection was investigated with MRSA during a 15 days of cycling experiment. Results indicated that a high bacterial inoculum and a prolonged antibiotic exposure were two key factors in the in vitro antibiotic resistance selection in MRSA and should be taken into consideration when choosing the drug treatment. Finally in part 3 bactericidal textile surfaces were investigated against MRSA. Polyesters coated after 160 seconds of copper sputtering have demonstrated a high bactericidal activity reducing the bacterial load of at least 3 logio after one hour of contact. -- Au cours des dernières décennies, des bactéries multirésistantes aux antibiotiques (BMR) ont émergé dans les hôpitaux du monde entier. Depuis lors, le nombre de BMR et la prévalence des infections liées aux soins (IAS) continuent de croître et sont associés à une augmentation des taux de morbidité et de mortalité ainsi qu'à des coûts élevés. De plus, le nombre de résistance à différentes classes d'antibiotiques a également augmenté parmi les BMR, limitant ainsi les options thérapeutiques disponibles lorsqu'elles ont liées a des infections. Des mesures visant une détection plus rapide des bactéries résistantes ainsi que l'établissement des paramètres de traitement antibiotiques adéquats sont primordiales lors d'infections déjà présentes. Dans une optique de prévention, la diminution des bactéries présentes sur les surfaces communément touchées pourrait aussi freiner la dissémination et l'évolution des bactéries résistantes. Durant ma thèse, différents projets incluant des nouvelles technologies et évoluant autour de la résistance antibiotique ont été traités. Des nouvelles technologies telles que le microscope à force atomique (AFM) et la pulvérisation cathodique de cuivre (PCC) ont été utilisées, et le Staphylococcus aureus résistant à la méticilline (SARM) a été la principale BMR étudiée. Deux grandes lignes de recherche ont été développées; la première visant à détecter la résistance antibiotique plus rapidement avec l'AFM et la seconde visant à prévenir la dissémination des BMR avec des surfaces crées grâce à la PCC. L'AFM a tout d'abord été utilisé en tant que microscope à sonde locale afin d'investiguer la résistance à la vancomycine chez les SARMs. Les résultats ont démontré que la rigidité de la paroi augmentait avec la résistance à la vancomycine et que celle-ci corrélait aussi avec une augmentation de l'épaisseur des parois, vérifiée grâce à la microscopie électronique. Des parties d'un AFM ont été ensuite utilisées afin de créer un nouveau dispositif de test de sensibilité aux antibiotiques, un nanocapteur. Ce nanocapteur mesure des vibrations produites par les bactéries vivantes. Après l'ajout d'antibiotique, les vibrations cessent définitivement chez les bactéries sensibles à l'antibiotique. En revanche pour les bactéries résistantes, les vibrations reprennent après le retrait de l'antibiotique dans le milieu permettant ainsi, en l'espace de minutes de détecter la sensibilité de la bactérie à un antibiotique. La PCC a été utilisée afin de créer des surfaces bactéricides pour la prévention de la viabilité des BMR sur des surfaces inertes. Des polyesters finement recouverts de cuivre (Cu), connu pour ses propriétés bactéricides, ont été produits et testés contre des SARMs. Une méthode de détection de viabilité des bactéries sur ces surfaces a été mise au point, et les polyesters obtenus après 160 secondes de pulvérisation au Cu ont démontré une excellente activité bactéricide, diminuant la charge bactérienne d'au moins 3 logio après une heure de contact. En conclusion, l'utilisation de nouvelles technologies nous a permis d'évoluer vers de méthodes de détection de la résistance antibiotique plus rapides ainsi que vers le développement d'un nouveau type de surface bactéricide, dans le but d'améliorer le diagnostic et la gestion des BMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119-69G>C, c.161+66A>T and c.875-31G>C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation. This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and the largest family with recessive achromatopsia involving GNAT2; thus, providing a unique opportunity for genotype-phenotype correlation for this extremely rare condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cet article présente les résultats de la revue systématique: Inglis SC, Clark RA, McAlister FA, et al. Structured telephone support or telemonitoring programmes for patients with chronic heart failure. Cochrane Database Systematic Reviews 2010, Issue 8. Art. No.:CD007228. DOI:10.1002/14651858.CD007228.pub2. PMID: 20687083

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the knowledge on heavy metal hyperaccumulation mechanisms is increasing, the genetic basis of cadmium (Cd) hyperaccurnulation remains to be elucidated. Thlaspi caerulescens is an attractive model since Cd accumulation polymorphism observed in this species suggests genetic differences between populations with low versus high Cd hyperaccumulation capacities. In our study, a methodology is proposed to analyse at a regional scale the genetic differentiation of T. caerulescens natural populations in relation to Cd hyperaccumulation capacity while controlling for different environmental, soil, plant parameters and geographic origins of populations. Twenty-two populations were characterised with AFLP markers and cpDNA polymorphism. Over all loci, a partial Mantel test showed no significant genetic structure with regard to the Cd hyperaccumulation capacity. Nevertheless, when comparing the marker variation to a neutral model, seven AFLP fragments (9% of markers) were identified as presenting particularly high genetic differentiation between populations with low and high Cd hyperaccurnulation capacity. Using simulations, the number of outlier loci was showed to be significantly higher than expected at random. These loci presented a genetic structure linked to Cd hyperaccumulation capacity independently of the geography, environment, soil parameters and Zn, Pb, Fe and Cu concentrations in plants. Using a canonical correspondence analysis, we identified three of them as particularly related to the Cd hyperaccumutation capacity. This study demonstrates that populations with low and high hyperaccurnulation capacities can be significantly distinguished based on molecular data. Further investigations with candidate genes and mapped markers may allow identification and characterization of genomic regions linked to factors involved in Cd hyperaccumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candidaemia is the fourth most common cause of bloodstream infection, with a high mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we hypothesize that variation in immune genes may predispose to candidaemia. We analyse 118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of European ancestry and a group of 11,920 controls. We validate the significant associations by comparison with a disease-matched control group. We observe significant association between candidaemia and SNPs in the CD58 (P = 1.97 × 10(-11); odds ratio (OR) = 4.68), LCE4A-C1orf68 (P = 1.98 × 10(-10); OR = 4.25) and TAGAP (P = 1.84 × 10(-8); OR = 2.96) loci. Individuals carrying two or more risk alleles have an increased risk for candidaemia of 19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic risk factors for candidaemia, which we subsequently validate for their role in antifungal host defence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stringent branch-site codon model was used to detect positive selection in vertebrate evolution. We show that the test is robust to the large evolutionary distances involved. Positive selection was detected in 77% of 884 genes studied. Most positive selection concerns a few sites on a single branch of the phylogenetic tree: Between 0.9% and 4.7% of sites are affected by positive selection depending on the branches. No functional category was overrepresented among genes under positive selection. Surprisingly, whole genome duplication had no effect on the prevalence of positive selection, whether the fish-specific genome duplication or the two rounds at the origin of vertebrates. Thus positive selection has not been limited to a few gene classes, or to specific evolutionary events such as duplication, but has been pervasive during vertebrate evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographical isolation and polyploidization are central concepts in plant evolution. The hierarchical organization of archipelagos in this study provides a framework for testing the evolutionary consequences for polyploid taxa and populations occurring in isolation. Using amplified fragment length polymorphism and simple sequence repeat markers, we determined the genetic diversity and differentiation patterns at three levels of geographical isolation in Olea europaea: mainland-archipelagos, islands within an archipelago, and populations within an island. At the subspecies scale, the hexaploid ssp. maroccana (southwest Morocco) exhibited higher genetic diversity than the insular counterparts. In contrast, the tetraploid ssp. cerasiformis (Madeira) displayed values similar to those obtained for the diploid ssp. guanchica (Canary Islands). Geographical isolation was associated with a high genetic differentiation at this scale. In the Canarian archipelago, the stepping-stone model of differentiation suggested in a previous study was partially supported. Within the western lineage, an east-to-west differentiation pattern was confirmed. Conversely, the easternmost populations were more related to the mainland ssp. europaea than to the western guanchica lineage. Genetic diversity across the Canarian archipelago was significantly correlated with the date of the last volcanic activity in the area/island where each population occurs. At the island scale, this pattern was not confirmed in older islands (Tenerife and Madeira), where populations were genetically homogeneous. In contrast, founder effects resulted in low genetic diversity and marked genetic differentiation among populations of the youngest island, La Palma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our knowledge of how genes act on the nervous system in response to the environment to generate behavioral plasticity is limited. A number of recent advancements in this area concern food-related behaviors and a specific gene family called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). The desert locust (Schistocerca gregaria) is notorious for its destructive feeding and long-term migratory behavior. Locust phase polyphenism is an extreme example of environmentally induced behavioral plasticity. In response to changes in population density, locusts dramatically alter their behavior, from solitary and relatively sedentary behavior to active aggregation and swarming. Very little is known about the molecular and genetic basis of this striking behavioral phenomenon. Here we initiated studies into the locust for gene by identifying, cloning, and studying expression of the gene in the locust brain. We determined the phylogenetic relationships between the locust PKG and other known PKG proteins in insects. FOR expression was found to be confined to neurons of the anterior midline of the brain, the pars intercerebralis. Our results suggest that differences in PKG enzyme activity are correlated to well-established phase-related behavioral differences. These results lay the groundwork for functional studies of the locust for gene and its possible relations to locust phase polyphenism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified C7orf11, which localizes to the nucleus and is expressed in fetal hair follicles, as the first disease gene for nonphotosensitive trichothiodystrophy (TTD). C7orf11 maps to chromosome 7p14, and the disease locus has been designated "TTDN1" (TTD nonphotosensitive 1). Mutations were found in patients with Amish brittle-hair syndrome and in other nonphotosensititive TTD cases with mental retardation and decreased fertility but not in patients with Sabinas syndrome or Pollitt syndrome. Therefore, genetic heterogeneity in nonphotosensitive TTD is a feature similar to that observed in photosensitive TTD, which is caused by mutations in transcription factor II H (TFIIH) subunit genes. Comparative immunofluorescence analysis, however, suggests that C7orf11 does not influence TFIIH directly. Given the absence of cutaneous photosensitivity in the patients with C7orf11 mutations, together with the protein's nuclear localization, C7orf11 may be involved in transcription but not DNA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of review: Elucidating the genetic background of Parkinson disease and essential tremor is crucial to understand the pathogenesis and improve diagnostic and therapeutic strategies. Recent findings: A number of approaches have been applied including familial and association studies, and studies of gene expression profiles to identify genes involved in susceptibility to Parkinson disease. These studies have nominated a number of candidate Parkinson disease genes and novel loci including Omi/HtrA2, GIGYF2, FGF20, PDXK, EIF4G1 and PARK16. A recent notable finding has been the confirmation for the role of heterozygous mutations in glucocerebrosidase (GBA) as risk factors for Parkinson disease. Finally, association studies have nominated genetic variation in the leucine-rich repeat and Ig containing 1 gene (LINGO1) as a risk for both Parkinson disease and essential tremor, providing the first genetic evidence of a link between the two conditions. Summary: Although undoubtedly genes remain to be identified, considerable progress has been achieved in the understanding of the genetic basis of Parkinson disease. This same effort is now required for essential tremor. The use of next-generation high-throughput sequencing and genotyping technologies will help pave the way for future insight leading to advances in diagnosis, prevention and cure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population genetic differentiation characterizes the repartition of alleles among populations. It is commonly thought that genetic differentiation measures, such as GST and D, should be near zero when allele frequencies are close to their expected value in panmictic populations, and close to one when they are close to their expected value in isolated populations. To analyse those properties, we first derive analytically a reference function f of known parameters that describes how important features of genetic differentiation (e.g. gene diversity, proportion of private alleles, frequency of the most common allele) are close to their expected panmictic and isolation value. We find that the behaviour of function f differs according to three distinct mutation regimes defined by the scaled mutation rate and the number of populations. Then, we compare GST and D to f, and demonstrate that their signal of differentiation strongly depends on the mutation regime. In particular, we show that D captures well the variations of genetic diversity when mutation is weak, otherwise it overestimates it when panmixia is not met. GST detects population differentiation when mutation is intermediate but has a low sensitivity to the variations of genetic diversity when mutation is weak. When mutation is strong the domain of sensitivity of both measures are altered. Finally, we also point out the importance of the number of populations on genetic differentiation measures, and provide recommendations for the use of GST and D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RÉSUMÉ La protéine kinase cyciine-cdc2p (Cdk) joue un rôle fondamental dans la progression du cycle cellulaire dans la levure de fission Schizosaccharomyces pombe. Nous avons étudié le rôle de cdc2p dans la régulation de la cascade de septation ou SIN (septation initiation network) en mitose et en méiose. Le SIN contrôle l'initiation de la cytokinèse à la fin de la mitose, et est supposé être négativement régulé par cdc2p. Nous avons mutagénéisé le site actif de cdc2p afin qu'il puisse lier un analogue de l'ATP (PP1) qui agit comme inhibiteur. Cet analogue ne peut pas lier la kinase de type sauvage. Cette approche dite «chemical genetics» permet une meilleure résolution temporelle comparée à l'approche classique utilisant les mutants sensibles à une température élevée. Nous avons montré que ce mutant cdc2-as (analogue sensitive) est fonctionnel et que, in vitro, l'activité kinase est inhibée en présence de l'analogue. Les cellules portant cette mutation, contrairement aux cellules de type sauvage s'arrêtent de manière irréversible soit en G2 soit en G1 et G2, suivant la concentration de l'inhibiteur. L'inactivation de cdc2p-as dans des cellules arrêtées en métaphase conduit au recrutement asymétrique des protéines du SIN sur le pôle du fuseau mitotique et au recrutement des composants du SIN, ainsi que de la ß-(1,3)glucan synthase à l'anneau contractile. De plus, nos résultats montrent que l'orthologue de la phosphatase cdc14p dans S. pombe, fip1p/clp1p, joue un rôle dans la régulation de la localisation des protéines du SIN suite à l'inactivation de cdc2p. Finalement, l'activité de cdc2p est requise pour maintenir la polo-like kinase plo1p sur les pôles du fuseau mitotique dans les premiers stages de la mitose. C'est pourquoi nous concluons que l'inactivation de cdc2p est suffisante pour activer le SIN et promouvoir la cytokinèse. Dans une étude séparée, nous avons caractérisé des potentiellement nouveaux composants ou régulateurs du SIN qui ont été isolés dans deux criblages génétiques visant à isoler des mutants atténuants la signalisation du SIN. Summary : The cyclin dependent protein kinase (Cdk) cdc2p plays a central role in the cell cycle progression of fission yeast Schizosaccharomyces pombe. We have studied the role of cdc2p in regulating the septation initiation network (SIN) in mitosis and meiosis. The SIN regulates the initiation of cytokinesis at the end of mitosis and is thought to be inhibited by cdc2p. We have mutated the active site of cdc2p to permit binding of an inhibitory ATP analogue (PP1), which is unable to bind unmodified kinases. This "chemical genetic" approach provides a much higher temporal resolution than it can be achieved with classical temperature-sensitive mutants. We demonstrate that cdc2-as (analogue sensitive) is functional and that addition of PP1 inhibits cdc2p kinase activity in vitro. Cells carrying the cdc2-as allele, but not cdc2+, undergo reversible cell cycle arrest following addition of PP1 either in G2, or at both major commitment points in the cell cycle (G1 and G2), depending upon the concentration of PP1. Inactivation of cdc2p-as in cells arrested in early mitosis promotes both the asymmetric recruitment of SIN proteins to the spindle pole bodies (SPBs), and the recruitment of the most downstream SIN components and ß-(1,3)-glucan synthase to the contractile ring. Furthermore, our results indicate that the S. pombe orthologue of Cdc14p, flp1p/clp1p, plays a role in regulating the relocalisation of SIN proteins following inactivation of cdc2p, and that cdc2p activity is required to retain the polo like kinase plot p on the SPBs in early mitosis. Thus, we conclude that inactivation of cdc2p is sufficient to activate the SIN and to promote cytokinesis. In a separate study, we have initially characterised potential novel components or regulators of the SIN pathway identified by two genetic screens for mutants attenuating SIN signaling.