69 resultados para Generalized Gaussian-noise
Resumo:
Purpose: Adiponectin, arterial stiffness, as well components of the renin-angiotensin system are associated with cardiovascular risk. This study was aimed to investigate whether plasma adiponectin was directly linked with pulse pressure (PP), as a marker for arterial stiffness, and the renin-angiotensin system (RAS). Methods and materials: A family-based study in subjects of African descent enriched with hypertensive patients was carried out in the Seychelles. Fasting plasma adiponectin was determined by ELISA, plasma renin activity according to the antibody-trapping principle and plasma aldosterone by radioimmunoassay. Daytime ambulatory blood pressure (BP) was measured using Diasys Integra devices. PP was calculated as the difference between systolic and diastolic BP. The association of adiponectin with PP, plasma renin activity and plasma aldosterone were analyzed using generalized estimating equations with a gaussian family link and an exchangeable correlation structure to account for familial aggregation. Results: Data from 335 subjects from 73 families (152 men, 183 women) were available. Men and women had mean (SD) age of 45.4 ± 11.1 and 47.3 ± 12.4 years, BMI of 26.3 ± 4.4 and 27.8 ± 5.1 kg/m2, daytime systolic/diastolic BP of 132.6 ± 15.4 / 86.1 ± 10.9 and 130 ± 17.6 / 83.4 ± 11.1 mmHg, and daytime PP of 46.5 ± 9.9 and 46.7 ± 10.7 mmHg, respectively. Plasma adiponectin was 4.4± 3.04 ng/ml in men and 7.39 ± 5.44 ng/ml in women (P <0.001). After adjustment for age, sex and BMI, log-transformed adiponectin was negatively associated with daytime PP (-0.009 ± 0.003, P = 0.004), plasma renin activity (-0.248 ± 0.080, P = 0.002) and plasma aldosterone (-0.004 ± 0.002, P = 0.014). Conclusion: Low adiponectin is associated with increased ambulatory PP and RAS activation in subjects of African descent. Our data are consistent with the observation that angiotensin II receptor blockers increase adiponectin in humans.
Resumo:
Résumé : La production de nectar assure aux plantes entomophiles un important succès reproducteur. Malgré cela, de nombreuses espèces d'orchidées ne produisent pas de nectar. La majorité de ces orchidées dites trompeuses exploitent simplement l'instinct des pollinisateurs généralistes, qui les pousse à chercher du nectar dans les fleurs. Afin d'optimiser la récolte de nectar, les pollinisateurs apprennent à différencier les fleurs trompeuses des nectarifères, et à concentrer leurs visites sur ces dernières, au détriment des plantes trompeuses. Chez les orchidées non autogames, la reproduction est assurée uniquement par les pollinisateurs. L'apprentissage des pollinisateurs a donc un impact négatif sur la reproduction des orchidées trompeuses. Cependant, les caractéristiques d'une espèce trompeuse et des espèces nectarifères au sein d'une communauté végétale peuvent affecter l'apprentissage et le taux de visite des pollinisateurs aux plantes trompeuses. J'ai réalisé des expériences en milieu naturel et en milieu contrôlé, pour déterminer si les caractéristiques florales, spatiales et temporelles des communautés affectent le taux de visite et le succès reproducteur de plantes trompeuses. Une agrégation spatiale élevée des plantes trompeuses et des plantes nectarifères diminue le succès reproducteur des plantes trompeuses. De plus, les pollinisateurs visitent plus souvent l'espèce trompeuse Iorsque ses fleurs sont de couleur similaire à celles de l'espèce nectarifère. Cet effet bénéfique de la similarité pour la couleur des fleurs s'accentue si les deux espèces sont mélangées et proches spatialement, ou si l'espèce trompeuse fleurit après l'espèce nectarifère. Enfin, le comportement des pollinisateurs n'est pas tout de suite affecté lorsque les caractéristiques de la communauté changent. Les caractéristiques des communautés végétales affectent donc la reproduction des espèces trompeuses. Bien que L'absence de coûts associés à la production de nectar, l'exportation efficace de pollen et la production de graines de qualité dont bénéficient les orchidées trompeuses favorisent Ieur maintien, les caractéristiques de la communauté peuvent aussi y contribuer. Mon étude fournit donc une explication alternative et complémentaire au maintien des orchidées trompeuses. Je conclus par une discussion des implications possibles de ces résultats sur le maintien et l'évolution des orchidées trompeuses, en tenant compte de la dynamique des caractéristiques des communautés végétales naturelles. Abstract : Despite the importance of producing food to ensure a high reproductive success, many orchid species lack such rewards. The majority of deceptive orchids simply exploit the instinctive food-foraging behaviour of generalist pollinators. This strategy is termed generalized food deception. To optimize their foraging efficiency, pollinators can learn to discriminate deceptive from rewarding flowers and to focus their visits to the rewarding plants, to the disadvantage of the deceptive plants. Because the reproductive success of non-autogamous orchids entirely relies on pollinator visitation rate, pollinator learning decreases the reproductive success of deceptive orchids. However, the characteristics of deceptive and rewarding plants within a community may affect pollinator learning and visitation rate to a deceptive orchid. Therefore, the biological characteristics of natural plant communities may be crucial to the maintenance of generalized food deceptive orchids. My study focused on the floral, spatial and temporal characteristics of plant communities. I used both in and ex sitar experiments to investigate whether these characteristics influence pollinator visitation rates and the reproductive success of deceptive orchids. A high spatial aggregation of both deceptive and rewarding species decreased the reproductive success of the deceptive species. Also, being of similar flower colour to rewarding sympatric species increased pollinator visitation rates to a deceptive species. The beneficial effect of flower colour similarity was even more pronounced when both species were spatially closely mingled or when the deceptive species flowered after the rewarding species. Finally, pollinator behaviour was unaffected in the short term by a change in the characteristics of plant communities, indicating that pollinators need time to learn under new conditions. Thus, the characteristics of plant communities may crucially affect the reproductive success of deceptive orchids. Although the absence of costs associated with nectar production, the efficient pollen export and the high seed quality of deceptive orchids may favour their maintenance, the characteristics of plant communities may also contribute to it. Therefore, my study provides an alternative yet complementary explanation to the maintenance of generalized food deceptive orchids in natural populations. I discuss the possible implications for the maintenance and the evolution of generalized food deceptive orchids with regards to the floral and temporal dynamics of natural plant communities.
Resumo:
We propose a deep study on tissue modelization andclassification Techniques on T1-weighted MR images. Threeapproaches have been taken into account to perform thisvalidation study. Two of them are based on FiniteGaussian Mixture (FGM) model. The first one consists onlyin pure gaussian distributions (FGM-EM). The second oneuses a different model for partial volume (PV) (FGM-GA).The third one is based on a Hidden Markov Random Field(HMRF) model. All methods have been tested on a DigitalBrain Phantom image considered as the ground truth. Noiseand intensity non-uniformities have been added tosimulate real image conditions. Also the effect of ananisotropic filter is considered. Results demonstratethat methods relying in both intensity and spatialinformation are in general more robust to noise andinhomogeneities. However, in some cases there is nosignificant differences between all presented methods.
Resumo:
Generalized Born methods are currently among the solvation models most commonly used for biological applications. We reformulate the generalized Born molecular volume method initially described by (Lee et al, 2003, J Phys Chem, 116, 10606; Lee et al, 2003, J Comp Chem, 24, 1348) using fast Fourier transform convolution integrals. Changes in the initial method are discussed and analyzed. Finally, the method is extensively checked with snapshots from common molecular modeling applications: binding free energy computations and docking. Biologically relevant test systems are chosen, including 855-36091 atoms. It is clearly demonstrated that, precision-wise, the proposed method performs as good as the original, and could better benefit from hardware accelerated boards.
Resumo:
The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.
Resumo:
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Resumo:
The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711≤r(2)≤0.752) and trabecular number (0.584≤r(2)≤0.648) and negative for trabecular space (-0.407 ≤r(2)≤-0.491), up to a pixel size of 1023μm. In addition, TBSμCT values were strongly correlated between each other (0.77≤r(2)≤0.96). Study results show that the correlations between TBSμCT at 93μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise.
Resumo:
We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Q tau estimator minimizes a tau scale of the differences between empirical and theoretical quantiles. It is n(1/2) consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online.
Resumo:
Proteins PRPF31, PRPF3 and PRPF8 (RP-PRPFs) are ubiquitously expressed components of the spliceosome, a macromolecular complex that processes nearly all pre-mRNAs. Although these spliceosomal proteins are conserved in eukaryotes and are essential for survival, heterozygous mutations in human RP-PRPF genes lead to retinitis pigmentosa, a hereditary disease restricted to the eye. Using cells from patients with 10 different mutations, we show that all clinically relevant RP-PRPF defects affect the stoichiometry of spliceosomal small nuclear RNAs (snRNAs), the protein composition of tri-small nuclear ribonucleoproteins and the kinetics of spliceosome assembly. These mutations cause inefficient splicing in vitro and affect constitutive splicing ex-vivo by impairing the removal of at least 9% of endogenously expressed introns. Alternative splicing choices are also affected when RP-PRPF defects are present. Furthermore, we show that the steady-state levels of snRNAs and processed pre-mRNAs are highest in the retina, indicating a particularly elevated splicing activity. Our results suggest a role for PRPFs defects in the etiology of PRPF-linked retinitis pigmentosa, which appears to be a truly systemic splicing disease. Although these mutations cause widespread and important splicing defects, they are likely tolerated by the majority of human tissues but are critical for retinal cell survival.