93 resultados para Gas Poisoning
Resumo:
Introduction: Carbon monoxide (CO) poisoning is one of the mostcommon causes of fatal poisoning. Symptoms of CO poisoning arenonspecific and the documentation of elevated carboxyhemoglobin(HbCO) levels in arterial blood sample is the only standard ofconfirming suspected exposure. The treatment of CO poisoning requiresnormobaric or hyperbaric oxygen therapy, according to the symptomsand HbCO levels. A new device, the Rad-57 pulse CO-oximeter allowsnoninvasive transcutaneous measurement of blood carboxyhemoglobinlevel (SpCO) by measurement of light wavelength absorptions.Methods: Prospective cohort study with a sample of patients, admittedbetween October 2008 - March 2009 and October 2009 - March 2010,in the emergency services (ES) of a Swiss regional hospital and aSwiss university hospital (Burn Center). In case of suspected COpoisoning, three successive noninvasive measurements wereperformed, simultaneously with one arterial blood HbCO test. A controlgroup includes patients admitted in the ES for other complaints (cardiacinsufficiency, respiratory distress, acute renal failure), but necessitatingarterial blood testing. Informed consent was obtained from all patients.The primary endpoint was to assess the agreement of themeasurements made by the Rad-57 (SpCO) and the blood levels(HbCO).Results: 50 patients were enrolled, among whom 32 were admittedfor suspected CO poisoning. Baseline demographic and clinicalcharacteristics of patients are presented in table 1. The median age was37.7 ans ± 11.8, 56% being male. Median laboratory carboxyhemoglobinlevels (HbCO) were 4.25% (95% IC 0.6-28.5) for intoxicated patientsand 1.8% (95% IC 1.0-5.3) for control patients. Only five patientspresented with HbCO levels >= 15%. The results disclose relatively faircorrelations between the SpCO levels obtained by the Rad-57 and thestandard HbCO, without any false negative results. However, theRad-57 tend to under-estimate the value of SpCO for patientsintoxicated HbCO levels >10% (fig. 1).Conclusion: Noninvasive transcutaneous measurement of bloodcarboxyhemoglobin level is easy to use. The correlation seems to becorrect for low to moderate levels (<15%). For higher values, weobserve a trend of the Rad-57 to under-estimate the HbCO levels. Apartfrom this potential limitation and a few cases of false-negative resultsdescribed in the literature, the Rad-57 may be useful for initial triageand diagnosis of CO.
Resumo:
BACKGROUND AND OBJECTIVE: Arterial base excess and lactate levels are key parameters in the assessment of critically ill patients. The use of venous blood gas analysis may be of clinical interest when no arterial blood is available initially. METHODS: Twenty-four pigs underwent progressive normovolaemic haemodilution and subsequent progressive haemorrhage until the death of the animal. Base excess and lactate levels were determined from arterial and central venous blood after each step. In addition, base excess was calculated by the Van Slyke equation modified by Zander (BE(z)). Continuous variables were summarized as mean +/- SD and represent all measurements (n = 195). RESULTS: Base excess according to National Committee for Clinical Laboratory Standards for arterial blood was 2.27 +/- 4.12 versus 2.48 +/- 4.33 mmol(-l) for central venous blood (P = 0.099) with a strong correlation (r(2) = 0.960, P < 0.001). Standard deviation of the differences between these parameters (SD-DIFBE) did not increase (P = 0.355) during haemorrhage as compared with haemodilution. Arterial lactate was 2.66 +/- 3.23 versus 2.71 +/- 2.80 mmol(-l) in central venous blood (P = 0.330) with a strong correlation (r(2) = 0.983, P < 0.001). SD-DIFLAC increased (P < 0.001) during haemorrhage. BE(z) for central venous blood was 2.22 +/- 4.62 mmol(-l) (P = 0.006 versus arterial base excess according to National Committee for Clinical Laboratory Standards) with strong correlation (r(2) = 0.942, P < 0.001). SD-DIFBE(z)/base excess increased (P < 0.024) during haemorrhage. CONCLUSION: Central venous blood gas analysis is a good predictor for base excess and lactate in arterial blood in steady-state conditions. However, the variation between arterial and central venous lactate increases during haemorrhage. The modification of the Van Slyke equation by Zander did not improve the agreement between central venous and arterial base excess.
Resumo:
The use of well characterized recombinant or purified protein antigens (Ag) for vaccination is of interest for safety reasons and in the case where inactivated pathogens are not available (cancer, allergy). However it requires the addition of adjuvants such as Ag carrier or immune stimulators to potentiate their immunogenicity. In this study, we demonstrated that gas-filled microbubbles (MB) can serve as an efficient Ag delivery system to promote phagocytosis of the model Ag ovalbumin (OVA) without the need of ultrasound application. Once internalized by DC, OVA was processed and presented to both CD4 and CD8 T cells in vitro; such observations were coupled with the capacity of MB to activate DC. In vivo administration of MB-associated OVA in naïve wild-type Balb/c mice resulted in the induction of OVA-specific antibody and T cell responses. Detailed characterization of the generated immune response demonstrated the production of both IgG1 and IgG2a serum antibodies, as well as the secretion of IFN-γ and IL-10 by splenocytes. Interestingly, similar results were obtained with human DC in regards of Ag delivery and cell activation. Therefore, the data presented here settle the proof of principle for the further evaluation of MB-based immunomodulation studies.
Resumo:
This study was designed to evaluate the potential of gas-filled microbubbles (MB) to be internalized by antigen-presenting cells (APC). Fluorescently labeled MB were prepared, thus permitting to track binding to, and internalization in, APC. Both human and mouse cells, including monocytes and dendritic cells (DC), prove capable to phagocyte MB in vitro. Observation by confocal laser scanning microscopy showed that interaction between MB and target cells resulted in a rapid internalization in cellular compartments and to a lesser extent in the cytoplasm. Capture of MB by APC resulted in phagolysosomal targeting as verified by double staining with anti-lysosome-associated membrane protein-1 monoclonal antibody and decrease of internalization by phagocytosis inhibitors. Fluorescent MB injected subcutaneously (s.c.) in mice were found to be associated with CD11c(+)DC in lymph nodes draining the injection sites 24 h after administration. Altogether, our study demonstrates that MB can successfully target APC both in vitro and in vivo, and thus may serve as a potent Ag delivery system without requirement for ultrasound-based sonoporation. This adds to the potential of applications of MB already extensively used for diagnostic imaging in humans.
Resumo:
Tolperisone (Mydocalm(®)) is a centrally acting muscle relaxant with few sedative side effects that is used for the treatment of chronic pain conditions. We describe three cases of suicidal tolperisone poisoning in three healthy young subjects in the years 2006, 2008 and 2009. In all cases, macroscopic and microscopic autopsy findings did not reveal the cause of death. Systematic toxicological analysis (STA) including immunological tests, screening for volatile substances and blood, urine and gastric content screening by GC-MS and HPLC-DAD demonstrated the presence of tolperisone in all cases. In addition to tolperisone, only the analgesics paracetamol (acetaminophen), ibuprofen and naproxen could be detected. The blood ethanol concentrations were all lower than 0.10g/kg. Tolperisone was extracted by liquid-liquid extraction using n-chlorobutane as the extraction solvent. The quantification was performed by GC-NPD analysis of blood, urine and gastric content. Tolperisone concentrations of 7.0mg/l, 14mg/l and 19mg/l were found in the blood of the deceased. In the absence of other autopsy findings, the deaths in these three cases were finally explained as a result of lethal tolperisone ingestion. To the best of our knowledge, these three cases are the first reported cases of suicidal tolperisone poisonings.
Resumo:
Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 micro M). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices.
Resumo:
Six gases (N((CH3)3), NH2OH, CF3COOH, HCl, NO2, O3) were selected to probe the surface of seven combustion aerosol (amorphous carbon, flame soot) and three types of TiO2 nanoparticles using heterogeneous, that is gas-surface reactions. The gas uptake to saturation of the probes was measured under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such as pyrones, N-heterocycles) sites, carbonyl (R1-C(O)-R2) and oxidizable (olefinic, -OH) groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. With few exceptions most investigated aerosol samples interacted with all probe gases which points to the coexistence of different functional groups on the same aerosol surface such as acidic and basic groups. Generally, the carbonaceous particles displayed significant differences in surface group density: Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas Diesel soot recovered from a Diesel particulate filter had the largest. The presence of basic oxides on carbonaceous aerosol particles was inferred from the ratio of uptakes of CF3COOH and HCl owing to the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt. Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable groups similar to amorphous carbon FS 101. TiO2 15 had the lowest density of functional groups among the three studied TiO2 nanoparticles for all probe gases despite the smallest size of its primary particles. The used technique enabled the measurement of the uptake probability of the probe gases on the various supported aerosol samples. The initial uptake probability, g0, of the probe gas onto the supported nanoparticles differed significantly among the various investigated aerosol samples but was roughly correlated with the density of surface groups, as expected. [Authors]
Resumo:
Midazolam is a widely accepted probe for phenotyping cytochrome P4503A. A gas chromatography-mass spectrometry (GC-MS)-negative chemical ionization method is presented which allows measuring very low levels of midazolam (MID), 1-OH midazolam (1OHMID) and 4-OH midazolam (4OHMID), in plasma, after derivatization with the reagent N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. The standard curves were linear over a working range of 20 pg/ml to 5 ng/ml for the three compounds, with the mean coefficients of correlation of the calibration curves (n = 6) being 0.999 for MID and 1OHMID, and 1.0 for 4OHMID. The mean recoveries measured at 100 pg/ml, 500 pg/ml, and 2 ng/ml, ranged from 76 to 87% for MID, from 76 to 99% for 1OHMID, from 68 to 84% for 4OHMID, and from 82 to 109% for N-ethyloxazepam (internal standard). Intra- (n = 7) and inter-day (n = 8) coefficients of variation determined at three concentrations ranged from 1 to 8% for MID, from 2 to 13% for 1OHMID and from 1 to 14% for 4OHMID. The percent theoretical concentrations (accuracy) were within +/-8% for MID and 1OHMID, within +/-9% for 4OHMID at 500 pg/ml and 2 ng/ml, and within +/-28% for 4OHMID at 100 pg/ml. The limits of quantitation were found to be 10 pg/ml for the three compounds. This method can be used for phenotyping cytochrome P4503A in humans following the administration of a very low oral dose of midazolam (75 microg), without central nervous system side-effects.
Resumo:
The role of busulfan (Bu) metabolites in the adverse events seen during hematopoietic stem cell transplantation and in drug interactions is not explored. Lack of availability of established analytical methods limits our understanding in this area. The present work describes a novel gas chromatography-tandem mass spectrometric assay for the analysis of sulfolane (Su) in plasma of patients receiving high-dose Bu. Su and Bu were extracted from a single 100 μL plasma sample by liquid-liquid extraction. Bu was separately derivatized with 2,3,5,6-tetrafluorothiophenolfluorinated agent. Mass spectrometric detection of the analytes was performed in the selected reaction monitoring mode on a triple quadrupole instrument after electronic impact ionization. Bu and Su were analyzed with separate chromatographic programs, lasting 5 min each. The assay for Su was found to be linear in the concentration range of 20-400 ng/mL. The method has satisfactory sensitivity (lower limit of quantification, 20 ng/mL) and precision (relative standard deviation less than 15 %) for all the concentrations tested with a good trueness (100 ± 5 %). This method was applied to measure Su from pediatric patients with samples collected 4 h after dose 1 (n = 46), before dose 7 (n = 56), and after dose 9 (n = 54) infusions of Bu. Su (mean ± SD) was detectable in plasma of patients 4 h after dose 1, and higher levels were observed after dose 9 (249.9 ± 123.4 ng/mL). This method may be used in clinical studies investigating the role of Su on adverse events and drug interactions associated with Bu therapy.
Resumo:
A gas chromatographic-mass spectrometric (GC-MS) method has been developed, for the determination of trimipramine (TRI), desmethyltrimipramine (DTRI), didesmethyltrimipramine (DDTRI), 2-hydroxytrimipramine (2-OH-TRI) and 2-hydroxydesmethyltrimipramine (2-OH-DTRI). The method includes two derivatization steps with trifluoroacetic acid anhydride and N-methyl-N-(tert.-butyldimethyl silyl)trifluoroacetamide and the use of an SE-54 capillary silica column. The limits of quantitation were found to be 2 ng/ml for DTRI and 4 ng/ml for all other substances. Besides, methods have been optimized for the hydrolysis of the glucuronic acid conjugated metabolites. This specific detection method is useful, as polymedication is a usual practice in clinical situations, and its sensitivity allows its use for single-dose pharmacokinetic studies.
Resumo:
L'imagerie est de plus en plus utilisée en médecine forensique. Actuellement, les connaissances nécessaires pour interpréter les images post mortem sont faibles et surtout celles concernant les artéfacts post mortem. Le moyen radiologique le plus utilisé en médecine légale est la tomodensitométrie multi-coupes (TDMC). Un de ses avantages est la détection de gaz dans le corps. Cette technique est utile au diagnostic d'embolie gazeuse mais sa très grande sensibilité rend visible du gaz présent même en petite quantité. Les premières expériences montrent que presque tous les corps scannés présentent du gaz surtout dans le système vasculaire. Pour cette raison, le médecin légiste est confronté à un nouveau problème : la distinction entre du gaz d'origine post-mortem et une embolie gazeuse vraie. Pour parvenir à cette distinction, il est essentiel d'étudier la distribution de ces gaz en post mortem. Aucune étude systématique n'a encore été réalisée à ce jour sur ce sujet.¦Nous avons étudié l'incidence et la distribution des gaz présents en post mortem dans les vaisseaux, dans les os, dans les tissus sous-cutanés, dans l'espace sous-dural ainsi que dans les cavités crânienne, thoracique et abdominale (82 sites au total) de manière à identifier les facteurs qui pourraient distinguer le gaz post-mortem artéfactuel d'une embolie gazeuse¦Les données TDMC de 119 cadavres ont été étudiées rétrospectivement. Les critères d'inclusion des sujets sont l'absence de lésion corporelle permettant la contamination avec l'air extérieur, et, la documentation du délai entre le moment du décès et celui du CT-scan (p.ex. rapport de police, protocole de réanimation ou témoin). La présence de gaz a été évaluée semi-quantitativement par deux radiologues et codifiée. La codification est la suivante : grade 0 = pas de gaz, grade 1 = une à quelques bulles d'air, grade 2 = structure partiellement remplie d'air, grade 3 = structure complètement remplie d'air.¦Soixante-quatre des 119 cadavres présentent du gaz (62,2%), et 56 (75,7%) ont montré du gaz dans le coeur. Du gaz a été détecté le plus fréquemment dans le parenchyme hépatique (40%); le coeur droit (ventricule 38%, atrium 35%), la veine cave inférieure (infra-rénale 30%, supra-rénale 26%), les veines sus-hépatiques (gauche 26%, moyenne 29%, droite 22 %), et les espaces du porte (29%). Nous avons constaté qu'une grande quantité de gaz liée à la putréfaction présente dans le coeur droit (grade 3) est associée à des collections de gaz dans le parenchyme hépatique (sensibilité = 100%, spécificité = 89,7%). Pour décrire nos résultats, nous avons construit une séquence d'animation qui illustre le processus de putréfaction et l'apparition des gaz à la TDMC post-mortem.¦Cette étude est la première à montrer que l'apparition post-mortem des gaz suit un modèle de distribution spécifique. L'association entre la présence de gaz intracardiaque et dans le parenchyme hépatique pourrait permettre de distinguer du gaz artéfactuel d'origine post-mortem d'une embolie gazeuse vraie. Cette étude fournit une clé pour le diagnostic de la mort due à une embolie gazeuse cardiaque sur la base d'une TDMC post-mortem.¦Abstract¦Purpose: We investigated the incidence and distribution of post-mortem gas detected with multidetector computed tomography (MDCT) to identify factors that could distinguish artifactual gas from cardiac air embolism.¦Material and Methods: MDCT data of 119 cadavers were retrospectively examined. Gas was semiquantitatively assessed in selected blood vessels, organs and body spaces (82 total sites).¦Results: Seventy-four of the 119 cadavers displayed gas (62.2%; CI 95% 52.8 to 70.9), and 56 (75.7%) displayed gas in the heart. Most gas was detected in the hepatic parenchyma (40%); right heart (38% ventricle, 35% atrium), inferior vena cava (30% infrarenally, 26% suprarenally), hepatic veins (26% left, 29% middle, 22% right), and portal spaces (29%). Male cadavers displayed gas more frequently than female cadavers. Gas was detected 5-84 h after death; therefore, the post-mortem interval could not reliably predict gas distribution (rho=0.719, p<0.0001). We found that a large amount of putrefaction-generated gas in the right heart was associated with aggregated gas bubbles in the hepatic parenchyma (sensitivity = 100%, specificity = 89.7%). In contrast, gas in the left heart (sensitivity = 41.7%, specificity = 100%) or in peri-umbilical subcutaneous tissues (sensitivity = 50%, specificity = 96.3%) could not predict gas due to putrefaction.¦Conclusion: This study is the first to show that the appearance of post-mortem gas follows a specific distribution pattern. An association between intracardiac gas and hepatic parenchymal gas could distinguish between post- mortem-generated gas and vital air embolism. We propose that this finding provides a key for diagnosing death due to cardiac air embolism.