117 resultados para GNSS Positioning
Resumo:
Different visual stimuli have been shown to recruit different mental imagery strategies. However the role of specific visual stimuli properties related to body context and posture in mental imagery is still under debate. Aiming to dissociate the behavioural correlates of mental processing of visual stimuli characterized by different body context, in the present study we investigated whether the mental rotation of stimuli showing either hands as attached to a body (hands-on-body) or not (hands-only), would be based on different mechanisms. We further examined the effects of postural changes on the mental rotation of both stimuli. Thirty healthy volunteers verbally judged the laterality of rotated hands-only and hands-on-body stimuli presented from the dorsum- or the palm-view, while positioning their hands on their knees (front postural condition) or behind their back (back postural condition). Mental rotation of hands-only, but not of hands-on-body, was modulated by the stimulus view and orientation. Additionally, only the hands-only stimuli were mentally rotated at different speeds according to the postural conditions. This indicates that different stimulus-related mechanisms are recruited in mental rotation by changing the bodily context in which a particular body part is presented. The present data suggest that, with respect to hands-only, mental rotation of hands-on-body is less dependent on biomechanical constraints and proprioceptive input. We interpret our results as evidence for preferential processing of visual- rather than kinesthetic-based mechanisms during mental transformation of hands-on-body and hands-only, respectively.
Resumo:
Résumé Si l'impact de l'informatique ne fait généralement pas de doute, il est souvent plus problématique d'en mesurer sa valeur. Les Directeurs des Systèmes d'Information (DSI) expliquent l'absence de schéma directeur et de vision à moyen et long terme de l'entreprise, par un manque de temps et de ressources mais aussi par un défaut d'implication des directions générales et des directions financières. L'incapacité de mesurer précisément la valeur du système d'information engendre une logique de gestion par les coûts, néfaste à l'action de la DSI. Alors qu'une mesure de la valeur économique de l'informatique offrirait aux directions générales la matière leur permettant d'évaluer réellement la maturité et la contribution de leur système d'information. L'objectif de cette thèse est d'évaluer à la fois l'alignement de l'informatique avec la stratégie de l'entreprise, la qualité du pilotage (mesure de performance) des systèmes d'information, et enfin, l'organisation et le positionnement de la fonction informatique dans l'entreprise. La mesure de ces trois éléments clés de la gouvernance informatique a été réalisée par l'intermédiaire de deux vagues d'enquêtes successives menées en 2000/2001 (DSI) et 2002/2003 (DSI et DG) en Europe francophone (Suisse Romande, France, Belgique et Luxembourg). Abstract The impact of Information Technology (IT) is today a clear evidence to company stakeholders. However, measuring the value generated by IT is a real challenge. Chief Information Officers (CIO) explain the absence of solid IT Business Plans and clear mid/long term visions by a lack of time and resources but also by a lack of involvement of business senior management (e.g. CEO and CFO). Thus, being not able to measure the economic value of IT, the CIO will have to face the hard reality of permanent cost pressures and cost reductions to justify IT spending and investments. On the other side, being able to measure the value of IT would help CIO and senior business management to assess the maturity and the contribution of the Information System and therefore facilitate the decision making process. The objective of this thesis is to assess the alignment of IT with the business strategy, to assess the quality of measurement of the Information System and last but not least to assess the positioning of the IT organisation within the company. The assessment of these three key elements of the IT Governance was established with two surveys (first wave in 2000/2001 for CIO, second wave in 2002/2003 for CIO and CEO) in Europe (French speaking countries namely Switzerland, France, Belgium and Luxembourg).
Resumo:
Immuno-electron microscopy was used to visualize the structure of reconstituted chromatin after in vitro transcription by purified T7 RNA polymerase. T7 RNA polymerase disrupts the nucleosomal structure in the transcribed region. This disruption is not influenced by the template, linear or supercoiled, and the presence or absence of nucleosomal positioning sequences in the transcribed region. In this study, we used monoclonal autoantibodies reacting with the nucleosome core particles and epitopes within several regions of the four different core histones. Some of the residues recognized by the autoantibodies are accessible on the surface of the nucleosomes and some are more internal and therefore less exposed at the surface. We show that the loss of the nucleosomal configuration during transcription is due to the loss of histone/DNA binding and that at least part of the histones are transferred to the nascent RNA chains. Consequently, after in vitro transcription by T7 RNA polymerase, the nucleosomal template does not conserve its original configuration, and no interaction of antigen/antibodies is observed anymore in the region that has been transcribed. Therefore, we conclude that in our in vitro transcription assay, nucleosomes are detached from the template, and not simply unfolded with histones remaining attached to the DNA.
Resumo:
Malposition of the acetabular component during hip arthroplasty increases the occurrence of impingement, reduces range of motion, and increases the risk of dislocation and long-term wear. To prevent malpositioned hip implants, an increasing number of computer-assisted orthopaedic systems have been described, but their accuracy is not well established. The purpose of this study was to determine the reproducibility and accuracy of conventional versus computer-assisted techniques for positioning the acetabular component in total hip arthroplasty. Using a lateral approach, 150 cups were placed by 10 surgeons in 10 identical plastic pelvis models (freehand, with a mechanical guide, using computer assistance). Conditions for cup implantations were made to mimic the operating room situation. Preoperative planning was done from a computed tomography scan. The accuracy of cup abduction and anteversion was assessed with an electromagnetic system. Freehand placement revealed a mean accuracy of cup anteversion and abduction of 10 degrees and 3.5 degrees, respectively (maximum error, 35 degrees). With the cup positioner, these angles measured 8 degrees and 4 degrees (maximum error, 29.8 degrees), respectively, and using computer assistance, 1.5 degrees and 2.5 degrees degrees (maximum error, 8 degrees), respectively. Computer-assisted cup placement was an accurate and reproducible technique for total hip arthroplasty. It was more accurate than traditional methods of cup positioning.
Resumo:
The dynamic properties of helix 12 in the ligand binding domain of nuclear receptors are a major determinant of AF-2 domain activity. We investigated the molecular and structural basis of helix 12 mobility, as well as the involvement of individual residues with regard to peroxisome proliferator-activated receptor alpha (PPARalpha) constitutive and ligand-dependent transcriptional activity. Functional assays of the activity of PPARalpha helix 12 mutants were combined with free energy molecular dynamics simulations. The agreement between the results from these approaches allows us to make robust claims concerning the mechanisms that govern helix 12 functions. Our data support a model in which PPARalpha helix 12 transiently adopts a relatively stable active conformation even in the absence of a ligand. This conformation provides the interface for the recruitment of a coactivator and results in constitutive activity. The receptor agonists stabilize this conformation and increase PPARalpha transcription activation potential. Finally, we disclose important functions of residues in PPARalpha AF-2, which determine the positioning of helix 12 in the active conformation in the absence of a ligand. Substitution of these residues suppresses PPARalpha constitutive activity, without changing PPARalpha ligand-dependent activation potential.
Resumo:
Background: Physical activity (PA) and related energy expenditure (EE) is often assessed by means of a single technique. Because of inherent limitations, single techniques may not allow for an accurate assessment both PA and related EE. The aim of this study was to develop a model to accurately assess common PA types and durations and thus EE in free-living conditions, combining data from global positioning system (GPS) and 2 accelerometers. Methods: Forty-one volunteers participated in the study. First, a model was developed and adjusted to measured EE with a first group of subjects (Protocol I, n = 12) who performed 6 structured and supervised PA. Then, the model was validated over 2 experimental phases with 2 groups (n = 12 and n = 17) performing scheduled (Protocol I) and spontaneous common activities in real-life condition (Protocol II). Predicted EE was compared with actual EE as measured by portable indirect calorimetry. Results: In protocol I, performed PA types could be recognized with little error. The duration of each PA type could be predicted with an accuracy below 1 minute. Measured and predicted EE were strongly associated (r = .97, P < .001). Conclusion: Combining GPS and 2 accelerometers allows for an accurate assessment of PA and EE in free-living situations.
Resumo:
Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane alpha-helix that may be involved in intramembrane protein-protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix alpha(0), formed by NS3 residues 12-23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design.
Resumo:
It is commonly believed that majority voting enhances parties to cluster around the centre of the political space, whereas proportional systems (PR) foster great ideological divergence. The theoretical arguments for these expectations go back to the work of Downs (1957) and Duverger (1954). More recent studies, however, produced quite contradictory empirical findings. In this paper I will test whether similar arguments hold true for the positioning of candidates campaigning in different electoral systems. The elections for the two chambers of the Swiss Parliament and the data from the Swiss Electoral Studies (SELECTS) and the Swiss Voting Advice Application (VAA) smartvote offer an excellent - almost laboratory like - opportunity to do so empirically. The analyses show clearly, the theoretical claims that majority voting necessarily fosters more moderate positions find no support. The candidates for the Council of States, elected in a majority system, are not more moderate than their fellow party candidates for the National Council which are elected in a PR system.
Resumo:
BACKGROUND: Patients requiring surgical skin excision after massive weight loss are challenging and require an individualized approach. The characteristic abdominal deformity includes a draping apron of panniculus, occasionally associated with previous transverse surgical scars from open gastric bypass surgery in the upper abdomen, which compromise blood supply of the abdominal skin. METHODS: We propose four different surgical techniques for safe abdominal body contouring in the presence of such scars: (1) a limited abdominoplasty of the lower abdomen is performed, and then contouring is completed by a reversed abdominoplasty with scar positioning in the submammary folds; (2) a one-stage procedure characterized by skin resection in the upper and lower abdomen, in which blood supply of the skin island between the submammary and suprapubic incisions is ensured by periumbilical perforators; (3) a perforator-sparing abdominoplasty with selective dissection of periumbilical abdominal wall perforators to secure flap blood supply and allow complete flap undermining up to the xyphoid process; (4) for patients with extensive excess skin, a modified Fleur-de-Lys abdominoplasty performed in such a way that the old transverse scar is transformed into a vertical scar. RESULTS: The treatment of four exemplary patients is described. All techniques yielded good esthetic and functional results through preservation of abdominal blood supply. CONCLUSION: Through an individualized approach, adequate abdominal body contouring can be performed safely, even in the presence of transverse surgical scars in the upper abdomen.
Resumo:
The mammalian Ku70 and Ku86 proteins form a heterodimer that binds to the ends of double-stranded DNA in vitro and is required for repair of radiation-induced strand breaks and V(D)J recombination [1,2]. Deletion of the Saccharomyces cerevisiae genes HDF1 and HDF2--encoding yKu70p and yKu80p, respectively--enhances radiation sensitivity in a rad52 background [3,4]. In addition to repair defects, the length of the TG-rich repeat on yeast telomere ends shortens dramatically [5,6]. We have shown previously that in yeast interphase nuclei, telomeres are clustered in a limited number of foci near the nuclear periphery [7], but the elements that mediate this localization remained unknown. We report here that deletion of the genes encoding yKu70p or its partner yKu80p altered the positioning of telomeric DNA in the yeast nucleus. These are the first mutants shown to affect the subnuclear localization of telomeres. Strains deficient for either yKu70p or yKu80p lost telomeric silencing, although they maintained repression at the silent mating-type loci. In addition, the telomere-associated silencing factors Sir3p and Sir4p and the TG-repeat-binding protein Rap1p lost their punctate pattern of staining and became dispersed throughout the nucleoplasm. Our results implicate the yeast Ku proteins directly in aspects of telomere organization, which in turn affects the repression of telomere-proximal genes.
Resumo:
CcrM is a DNA methyltransferase that methylates the adenine in GANTC motifs in the chromo-some of the bacterial model Caulobacter crescentus. The loss of the CcrM homolog is lethal in C. crescentus and in several other species of Alphaproteobacteria. In this research, we used different experimental and bioinformatic approaches to determine why CcrM is so critical to the physiology of C. crescentus. We first showed that CcrM is a resident orphan DNA methyltransferase in non-Rickettsiales Alphaproteobacteria and that its gene is strictly conserved in this clade (with only one ex¬ception among the genomes sequenced so far). In C. crescentus, cells depleted in CcrM in rich medium quickly lose viability and present an elongated phenotype characteristic of an im¬pairment in cell division. Using minimal medium instead of rich medium as selective and main¬tenance substrate, we could generate a AccrM mutant that presents a viability comparable to the wild type strain and only mild morphological defects. On the basis of a transcriptomic ap¬proach, we determined that several genes essential for cell division were downregulated in the AccrM strain in minimal medium. We offered decisive arguments to support that the efficient transcription of two of these genes, ftsZ and mipZ, coding respectively for the Z-ring forming GTPase FtsZ and an inhibitor of FtsZ polymerization needed for the correct positioning of the Z- ring at mid-cell, requires the methylation of an adenine in a conserved GANTC motif located in their core promoter region. We propose a model, according to which the genome of C. crescentus encodes a transcriptional activator that requires a methylated adenine in a GANTC context to bind to DNA and suggest that this transcriptional regulator might be the global cell-cycle regulator GcrA. In addition, combining a classic genetic approach and in vitro evolution experiments, we showed that the mortality and cell division defects of the AccrM strain in rich medium are mainly due to limiting intracellular levels of the FtsZ protein. We also studied the dynamics of GANTC methylation in C. crescentus using the SMRT technol¬ogy developed by Pacific Biosciences. Our findings support the commonly accepted model, accord¬ing to which the methylation state of GANTC motifs varies during the cell cycle of C. crescentus: before the initiation of DNA replication, the GANTC motifs are fully-methylated (methylated on both strands); when the DNA gets replicated, the GANTC motifs become hemi-methylated (methyl¬ated on one strand only) and this occurs at different times during replication for different loci along the chromosome depending on their position relative to the origin of replication; the GANTC mo¬tifs are only remethylated after DNA replication has finished as a consequence of the massive and short-lived expression of CcrM in predivisional cells. About 30 GANTC motifs in the C. crescentus chromosome were found to be undermethylated in most of the bacterial population; these might be protected from CcrM activity by DNA binding proteins and some of them could be involved in methylation-based bistable transcriptional switches. - CcrM est une ADN méthyltransférase qui méthyle les adénines dans le contexte GANTC dans le génome de la bactérie modèle Caulobacter crescentus. La perte de l'homologue de CcrM chez C. crescentus et chez plusieurs autres espèces d'Alphaproteobactéries est létale. Dans le courant de cette recherche, nous tentons de déterminer pourquoi la protéine CcrM est cruciale pour la survie de C. crescentus. Nous démontrons d'abord que CcrM est une adénine méthyltransférase orpheline résidente, dont le gène fait partie du génome minimal partagé par les Alphaprotéobactéries non-Rickettsiales (à une exception près). Lorsqu'une souche de C. crescentus est privée de CcrM, sa viabilité décroît rapi¬dement et ses cellules présentent une morphologie allongée qui suggère que la division cellulaire est inhibée. Nous sommes parvenus à créer une souche AccrM en utilisant un milieu minimum, au lieu du milieu riche classiquement employé, comme milieu de sélection et de maintenance pour la souche. Lorsque nous avons étudié le transcriptome de cette souche de C. crescentus privée de CcrM, nous avons pu constater que plusieurs gènes essentiels pour le bon déroulement de la division cellulaire bactérienne étaient réprimés. En particulier, l'expression adéquate des gènes ftsZ et mipZ - qui codent, respectivement, pour FtsZ, la protéine qui constitue, au milieu de la cellule, un anneau protéique qui initie le processus de division et pour MipZ, un inhibiteur de la polymérisation de FtsZ qui est indispensable pour le bon positionnement de l'anneau FtsZ - est dépendante de la présence d'une adénine méthylée dans un motif GANTC conservé situé dans leur région promotrice. Nous présentons un modèle selon lequel le génome de C. crescentus code pour un facteur de transcription qui exige la présence d'une adénine méthylée dans un contexte GANTC pour s'attacher à l'ADN et nous suggérons qu'il pourrait s'agir du régulateur global du cycle cellulaire GcrA. En outre, nous montrons, en combinant la génétique classique et une approche basée sur l'évolution expérimentale, que la mortalité et l'inhibition de la division cellulaire caractéristiques de la souche àccrMeη milieu riche sont dues à des niveaux excessivement bas de protéine FtsZ. Nous avons aussi étudié la dynamique de la méthylation du chromosome de C. crescentus sur la base de la technologie SMRT développée par Pacific Biosciences. Nous confirmons le modèle communément accepté, qui affirme que l'état de méthylation des motifs GANTC change durant le cycle cellulaire de C. crescentus: les motifs GANTC sont complètement méthylés (méthylés sur les deux brins) avant de début de la réplication de l'ADN; ils deviennent hémi-méthylés (méthylés sur un brin seulement) une fois répliqués, ce qui arrive à différents moments durant la réplication pour différents sites le long du chromosome en fonction de leur position par rapport à l'origine de répli-cation; finalement, les motifs GANTC sont reméthylés après la fin de la réplication du chromosome lorsque la protéine CcrM est massivement, mais très transitoirement, produite. Par ailleurs, nous identifions dans le chromosome de C. crescentus environ 30 motifs GANTC qui restent en perma-nence non-méthylés dans une grande partie de la population bactérienne; ces motifs sont probable-ment protégés de l'action de CcrM par des protéines qui s'attachent à l'ADN et certains d'entre eux pourraient être impliqués dans des mécanismes de régulation générant une transcription bistable.
Resumo:
Background: Cardiac computed tomographic scans, coronary angiograms, and aortographies are routinely performed in transcatheter heart valve therapies. Consequently, all patients are exposed to multiple contrast injections with a following risk of nephrotoxicity and postoperative renal failure. The transapical aortic valve implantation without angiography can prevent contrast-related complications. Methods: Between November 2008 and November 2009, 30 consecutive high-risk patients (16 female, 53.3%) underwent transapical aortic valve implantation without angiography. The landmarks identification, the stent-valve positioning, and the postoperative control were routinely performed under transesophageal echocardiogram and fluoroscopic visualization without contrast injections. Results: Mean age was 80.1 +/- 8.7 years. Mean valve gradient, aortic orifice area, and ejection fraction were 60.3 +/- 20.9 mm Hg, 0.7 +/- 0.16 cm(2), and 0.526 +/- 0.128, respectively. Risk factors were pulmonary hypertension (60%), peripheral vascular disease (70%), chronic pulmonary disease (50%), previous cardiac surgery (13.3%), and chronic renal insufficiency (40%) (mean blood creatinine and urea levels: 96.8 +/- 54 mu g/dL and 8.45 +/- 5.15 mmol/L). Average European System for Cardiac Operative Risk Evaluation was 32.2 +/- 13.3%. Valve deployment in the ideal landing zone was 96.7% successful and valve embolization occurred once. Thirty-day mortality was 10% (3 patients). Causes of death were the following: intraoperative ventricular rupture (conversion to sternotomy), right ventricular failure, and bilateral pneumonia. Stroke occurred in one patient at postoperative day 9. Renal failure (postoperative mean blood creatinine and urea levels: 91.1 +/- 66.8 mu g/dL and 7.27 +/- 3.45 mmol/L), myocardial infarction, and atrioventricular block were not detected. Conclusions: Transapical aortic valve implantation without angiography requires a short learning curve and can be performed routinely by experienced teams. Our report confirms that this procedure is feasible and safe, and provides good results with low incidence of postoperative renal disorders. (Ann Thorac Surg 2010; 89: 1925-33) (C) 2010 by The Society of Thoracic Surgeons
Resumo:
Instead of standard rigid thoracoscopes, we used a modified gastroscope for video assistance during 12 minimally invasive left internal mammary harvesting. Flexibility and remote control of its last centimeters give to the gastroscope a total freedom of movements, and perfect positioning in every direction. The scope is equipped with cold light, a suction canal and an irrigation canal, which allow for in situ washing without needing to remove it from the thoracic cavity. Thanks to these advantages, vision and lighting are always perfect.
Resumo:
PURPOSE: Performing total knee replacement, accurate alignment and neutral rotation of the femoral component are widely believed to be crucial for the ultimate success. Contrary to absolute bone referenced alignment, using a ligament balancing technique does not automatically rotate the femoral component parallel to the transepicondylar axis. In this context we established the hypothesis that rotational alignment of the femoral component parallel to the transepicondylar axis (0° ± 3°) results in better outcome than alignment outside of this range. METHODS: We analysed 204 primary cemented mobile bearing total knee replacements five years postoperatively. Femoral component rotation was measured on axial radiographs using the condylar twist angle (CTA). Knee society score, range of motion as well as subjective rating documented outcome. RESULTS: In 96 knees the femoral component rotation was within the range 0 ± 3° (neutral rotation group), and in 108 knees the five-year postoperative rotational alignment of the femoral component was outside of this range (outlier group). Postoperative CTA showed a mean of 2.8° (±3.4°) internal rotation (IR) with a range between 6° external rotation (ER) and 15° IR (CI 95). No difference with regard to subjective and objective outcome could be detected. CONCLUSION: The present work shows that there is a large given natural variability in optimal rotational orientation, in this study between 6° ER and 15° IR, with numerous co-factors determining correct positioning of the femoral component. Further studies substantiating pre- and postoperative determinants are required to complete the understanding of resulting biomechanics in primary TKA.
Resumo:
Electron microscopy was used to monitor the fate of reconstituted nucleosome cores during in vitro transcription of long linear and supercoiled multinucleosomic templates by the prokaryotic T7 RNA polymerase and the eukaryotic RNA polymerase II. Transcription by T7 RNA polymerase disrupted the nucleosomal configuration in the transcribed region, while nucleosomes were preserved upstream of the transcription initiation site and in front of the polymerase. Nucleosome disruption was independent of the topology of the template, linear or supercoiled, and of the presence or absence of nucleosome positioning sequences in the transcribed region. In contrast, the nucleosomal configuration was preserved during transcription from the vitellogenin B1 promoter with RNA polymerase II in a rat liver total nuclear extract. However, the persistence of nucleosomes on the template was not RNA polymerase II-specific, but was dependent on another activity present in the nuclear extract. This was demonstrated by addition of the extract to the T7 RNA polymerase transcription reaction, which resulted in retention of the nucleosomal configuration. This nuclear activity, also found in HeLa cell nuclei, is heat sensitive and could not be substituted by nucleoplasmin, chromatin assembly factor (CAF-I) or a combination thereof. Altogether, these results identify a novel nuclear activity, called herein transcription-dependent chromatin stabilizing activity I or TCSA-I, which may be involved in a nucleosome transfer mechanism during transcription.