191 resultados para GERMLINE MUTATION
Resumo:
BACKGROUND: Mutations in the SCN9A gene cause chronic pain and pain insensitivity syndromes. We aimed to study clinical, genetic, and electrophysiological features of paroxysmal extreme pain disorder (PEPD) caused by a novel SCN9A mutation. METHODS: Description of a 4-generation family suffering from PEPD with clinical, genetic and electrophysiological studies including patch clamp experiments assessing response to drug and temperature. RESULTS: The family was clinically comparable to those reported previously with the exception of a favorable effect of cold exposure and a lack of drug efficacy including with carbamazepine, a proposed treatment for PEPD. A novel p.L1612P mutation in the Nav1.7 voltage-gated sodium channel was found in the four affected family members tested. Electrophysiologically the mutation substantially depolarized the steady-state inactivation curve (V1/2 from -61.8 ± 4.5 mV to -30.9 ± 2.2 mV, n = 4 and 7, P < 0.001), significantly increased ramp current (from 1.8% to 3.4%, n = 10 and 12) and shortened recovery from inactivation (from 7.2 ± 5.6 ms to 2.2 ± 1.5 ms, n = 11 and 10). However, there was no persistent current. Cold exposure reduced peak current and prolonged recovery from inactivation in wild-type and mutated channels. Amitriptyline only slightly corrected the steady-state inactivation shift of the mutated channel, which is consistent with the lack of clinical benefit. CONCLUSIONS: The novel p.L1612P Nav1.7 mutation expands the PEPD spectrum with a unique combination of clinical symptoms and electrophysiological properties. Symptoms are partially responsive to temperature but not to drug therapy. In vitro trials of sodium channel blockers or temperature dependence might help predict treatment efficacy in PEPD.
Resumo:
Cousin syndrome, also called pelviscapular dysplasia (OMIM 260660), is characterized by short stature, craniofacial dysmorphism, and multiple skeletal anomalies. Following its description in two sibs in 1982, no new cases have been observed until the observation of two unrelated cases in 2008 who were homozygous for frameshift mutations in TBX15. We investigated an adult individual with short stature, a complex craniofacial dysmorphism, malformed and rotated ears, short neck, elbow contractures, hypoacusis, and hypoplasia of scapula and pelvis on radiographs. We identified homozygosity for a novel nonsense mutation (c.841C>T) in TBX15 predicted to cause a premature stop (p.Arg281*) with truncation of the protein. This observation confirms that Cousin syndrome is a consistent and clinically recognizable phenotype caused by loss of function of TBX15.
Resumo:
A clinically significant proportion of couples experience difficulty in conceiving a child. In about half of these cases male infertility is the cause and often genetic factors are involved. Despite advances in clinical diagnostics ∼50% of male infertility cases remain idiopathic. Based on this, further analysis of infertile males is required to identify new genetic factors involved in male infertility. This review focuses on cation channel of sperm (CATSPER)-related male infertility. It is based on PubMed literature searches using the keywords 'CATSPER', 'male infertility', 'male contraception', 'immunocontraception' and 'pharmacologic contraception' (publication dates from January 1979 to December 2009). Previously, contiguous gene deletions including the CATSPER2 gene implicated the sperm-specific CATSPER channel in syndromic male infertility (SMI). Recently, we identified insertion mutations of the CATSPER1 gene in families with recessively inherited nonsyndromic male infertility (NSMI). The CATSPER channel therefore represents a novel human male fertility factor. In this review we summarize the genetic and clinical data showing the role of CATSPER mutation in human forms of NSMI and SMI. In addition, we discuss clinical management and therapeutic options for these patients. Finally, we describe how the CATSPER channel could be used as a target for development of a male contraceptive.
Resumo:
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), which naturally persists in rodents, represents a model for HIV, HBV, and HCV. Cleavage of the viral glycoprotein precursor by membrane-bound transcription factor peptidase, site 1 (Mbtps1 or site-1 protease), is crucial for the life cycle of arenaviruses and therefore represents a potential target for therapy. Recently, we reported a viable hypomorphic allele of Mbtps1 (woodrat) encoding a protease with diminished enzymatic activity. Using the woodrat allele, we examine the role of Mbtps1 during persistent LCMV infection. Surprisingly, Mbtps1 inhibition limits persistent but not acute viral infection and is associated with an organ/cell type-specific decrease in viral titers. Analysis of bone marrow-derived dendritic cells from woodrat mice supports their specific role in resolving persistent viral infection. These results support in vivo targeting of Mbtps1 in the treatment of arenavirus infections and demonstrate a critical role for dendritic cells in persistent viral infections.
Resumo:
Background: Activating mutations of the anaplastic lymphoma receptor tyrosine kinase gene (ALK) were identified in both somatic and familial neuroblastoma. The most common somatic mutation, F1174L, is associated with NMYC amplification and displayed an efficient transforming activity in vivo. In addition, both AKL-F1174L and NMYC were shown cooperate in neuroblastoma tumorigenesis in animal models. To analyse the role of ALK mutations in the oncogenesis of neuroblastoma, ALK wt and various ALK mutants were transduced in murine neural crest stem cells (MONC1). Methods: ALK-wt, and F1174L, and R1275Q mutants were stably expressed by retroviral infection using the pMIGR1 vector in the murine neural crest stem cell line MONC-1, previously immortalised with v-myc, and further implanted subcutaneously or orthotopically in nude mice. Results: Both MONC1-ALK-F1174L and -R1275Q cells displayed a rapid tumour forming capacity upon subcutaneous injection in nude mice compared to control MONC1-MIGR or MONC1 cells. Interestingly, the transforming capacity of the F1174L mutant was much more potent compared to that of R1275Q mutant in murine neural crest stem cells, while ALK-wt was not tumorigenic. In addition, mice implanted orthotopically in the left adrenal gland with MONC1-ALK-F1174L cells developed highly aggressive tumours in 100% of mice within three weeks, while MONC1-Migr or MONC1 derived tumours displayed a longer latency and a reduced tumour take. Conclusions: The activating ALK-F1174L mutant is highly tumorigenic in neural crest stem cells. Nevertheless, we cannot exclude a functional implication of the v-myc oncogene used for MONC1 cells immortalisation. Indeed, the control MONC1-Migr and MONC1 cells were also able to derive subcutaneous and orthotopic tumours, although with considerable reduced efficiency. Further investigations using neural crest stem cell lacking exogenous myc expression are currently on way to assess the exclusive role of ALK mutations in NB oncogenesis.
Resumo:
Le Syndrome de Bruck (Bruck Syndrome; BS) est une maladie autosomique récessive assemblant la combinaison inhabituelle de fragilité osseuse semblable à celle de l'Ostéogenèse Imparfaite (0I) avec des contractures congénitales tendineuses et cutanées des grandes articulations («ptérygia»). Les cas décrits jusqu'à ce jour mettent en évidence une grande hétérogénéité du tableau clinique, liée en partie au manque d'un diagnostic biochimique ou moléculaire. Nous savons que dans le BS les gènes codant pour le collagène 1 ne sont pas mutés, mais savons néanmoins, grâce à l'étude du collagène extrait de biopsies osseuses, qu'il y a un déficit d'hydroxylation des résidus de lysine dans les télopeptides du collagène 1 qui servent à la formation des liens intermoléculaires (crosslinks) et donc à la stabilisation des fibres de collagène. Un locus génétique du BS à été mappé sur 17q12, mais le gène responsable sur ce locus reste inconnu; plus récemment, deux mutations dans le gène de la lysyl hydroxylase 2 (PLOD2, position chromosomique 3q23-q24) ont été identifiées, démontrant l'hétérogénéité génétique du ES. La proportion de ES liée à 17p22 (BS type 1) et celle liée à une mutation dans PLOD2 (BS type 2) est encore incertaine et nous manquons de données sur la corrélation phenotype-génotype. Nous avons étudié le cas d'un garçon avec des contractures et des ptérygia dès la naissance, combinées à une ostéopénie sévère de type OI menant à des fractures multiples. Ses urines contenaient une quantité élevée d'hydroxyproline, indiquant un remaniement important du tissu osseux, mais peu de produits de dégradation des crosslinks du collagène, indiquant donc une réduction de la proportion de crosslinks dans le collagène in vivo. Nous avons pu démontrer chez lui la présence d'une nouvelle mutation homozygote dans le gène PLOD2 menant à une substitution Arg598His; les deux parents du sujet étaient hétérozygotes pour la mutation et celle-ci était absente dans notre population témoin. La mutation est adjacente aux deux mutations rapportées précédemment (Gly601Val et Thr608Ile), ce qui suggère la présence d'un ''hotspot'' mutationnel mais aussi d'une région de grande importance fonctionnelle sur PLOD2 : cette observation est importante pour la création d'inhibiteurs de PLOD2, recherchés en ce moment pour le traitement de la fibrose. La combinaison de ptérygia et de fragilité osseuse, comme illustrée par notre patient est apparemment contradictoire et donc difficilement explicable mais indique que l'hydroxylation des résidus lysyl des télopeptides est importante non seulement pour la stabilité osseuse mais aussi dans la morphogénèse et la formation des articulations dans la période prénatale. Finalement, la mesure des produits de dégradation du collagène dans l'urine et l'analyse de mutation de PLOD2 permet le diagnostic du syndrome de Bruck et permet de le différencier de l'Osteogénèse Imparfaite. -- Bruck syndrome (BS) is a recessively-inherited phenotypic disorder featuring the unusual combination of skeletal changes resembling osteogenesis imperfecta (0I) with congenital contractures of the large joints. Clinical heterogeneity is apparent in cases reported thus far. While the genes coding for collagen 1 chains are unaffected in BS, there is biochemical evidence for a defect in the hydroxylation of lysine residues in collagen 1 telopeptides. One BS locus has been mapped at 17p12, but more recently, two mutations in the lysyl hydroxylase 2 gene (PLOD2, 3q23-q24) have been identified in BS, showing genetic heterogeneity. The proportion of BS cases linked to 17p22 (BS type 1) or caused by mutations in PLOD2 (BS type 2) is still uncertain, and phenotypic correlations are lacking. We report on a boy who had congenital contractures with pterygia at birth and severe 0I-like osteopenia and multiple frac-tures. His urine contained high amounts of hydroxyproline but low amounts of collagen crosslinks degradation products; and he was shown to be homozygous for a novel mutation leading to an Arg598His substitution in PLOD2. The mutation is adjacent to the two mutations previously reported (Gly601Val and Thr608Ile), suggesting a functionally important hotspot in PLOD2. The combination of pterygia with bone fragility, as illustrated by this case, is difficult to explain; it suggests that telopeptide lysyl hydroxylation must be involved in prenatal joint formation and morphogenesis. Collagen degradation products in urine and mutation analysis ofPLOD2 maybe used to diagnose BS and differentiate it from M.
Resumo:
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.
Resumo:
Vax1 and Vax2 have been implicated in eye development and the closure of the choroid fissure in mice and zebrafish. We sequenced the coding exons of VAX1 and VAX2 in 70 patients with anophthalmia/microphthalmia. In VAX1, we observed homozygosity for two successive nucleotide substitutions c.453G>A and c.454C>A, predicting p.Arg152Ser, in a proband of Egyptian origin with microphthalmia, small optic nerves, cleft lip/palate and corpus callosum agenesis. This mutation affects an invariant residue in the homeodomain of VAX1 and was absent from 96 Egyptian controls. It is likely that the mutation results in a loss of function, as the mutation results in a phenotype similar to the Vax1 homozygous null mouse. We did not identify any mutations in VAX2. This is the first description of a phenotype associated with a VAX1 mutation in humans and establishes VAX1 as a new causative gene for anophthalmia/microphthalmia. ©2011 Wiley Periodicals, Inc.
Resumo:
Two candidate genes for controlling thymocyte differentiation, T-cell factor-1 (Tcf-1) and lymphoid enhancer-binding factor (Lef-1), encode closely related DNA-binding HMG-box proteins. Their expression pattern is complex and largely overlapping during embryogenesis, yet restricted to lymphocytes postnatally. Here we generate two independent germline mutations in Tcf-1 and find that thymocyte development in (otherwise normal) mutant mice is blocked at the transition from the CD8+, immature single-positive to the CD4+/CD8+ double-positive stage. In contrast to wild-type mice, most of the immature single-positive cells in the mutants are not in the cell cycle and the number of immunocompetent T cells in peripheral lymphoid organs is reduced. We conclude that Tcf-1 controls an essential step in thymocyte differentiation.
Resumo:
AIMS: To identify the molecular basis for a low CYP1A2 metabolic status, as determined by a caffeine phenotyping test, in a 71-year-old, nonsmoking, Caucasian woman who presented with very high clozapine concentrations despite being administered a standard dose of the drug. METHODS: The nucleotide sequence of the 7 exons, exon-intron boundaries and 5'-flanking region of the CYP1A2 gene was analysed by direct sequencing. RESULTS: Only one heterozygous point mutation was identified in the donor splice site of intron 6 (3534G > A) of CYP1A2. This mutation could cause abnormal RNA splicing and therefore lead to a truncated nonfunctional enzyme. No other carrier of this mutation was identified in a population of 100 unrelated healthy Caucasians. CONCLUSIONS: This is the first report of a splice-site mutation affecting the CYP1A2 gene. This polymorphism is a likely explanation for the low CYP1A2 activity associated with high clozapine concentrations in this patient.
Resumo:
The mammalian Ku70 and Ku86 proteins form a heterodimer that binds to the ends of double-stranded DNA in vitro and is required for repair of radiation-induced strand breaks and V(D)J recombination [1,2]. Deletion of the Saccharomyces cerevisiae genes HDF1 and HDF2--encoding yKu70p and yKu80p, respectively--enhances radiation sensitivity in a rad52 background [3,4]. In addition to repair defects, the length of the TG-rich repeat on yeast telomere ends shortens dramatically [5,6]. We have shown previously that in yeast interphase nuclei, telomeres are clustered in a limited number of foci near the nuclear periphery [7], but the elements that mediate this localization remained unknown. We report here that deletion of the genes encoding yKu70p or its partner yKu80p altered the positioning of telomeric DNA in the yeast nucleus. These are the first mutants shown to affect the subnuclear localization of telomeres. Strains deficient for either yKu70p or yKu80p lost telomeric silencing, although they maintained repression at the silent mating-type loci. In addition, the telomere-associated silencing factors Sir3p and Sir4p and the TG-repeat-binding protein Rap1p lost their punctate pattern of staining and became dispersed throughout the nucleoplasm. Our results implicate the yeast Ku proteins directly in aspects of telomere organization, which in turn affects the repression of telomere-proximal genes.
Resumo:
Jalili syndrome denotes a recessively inherited combination of an eye disease (cone-rod dystrophy) and a dental disorder (amelogenesis imperfecta), which is caused by mutations in the CNNM4 gene. Whereas the ophthalmic consequences of these mutations have been studied comprehensively, the dental phenotype has obtained less attention. A defective transport of magnesium ions by the photoreceptors of the retina is assumed to account for the progressive visual impairment. Since magnesium is also incorporated in the mineral of dental hard tissues, we hypothesized that magnesium concentrations in defective enamel resulting from mutations in CNNM4 would be abnormal, if a similar deficiency of magnesium transport also accounted for the amelogenesis imperfecta. Thus, a detailed analysis of the dental hard tissues was performed in two boys of Kosovan origin affected by Jalili syndrome. Retinal dystrophy of the patients was diagnosed by a comprehensive eye examination and full-field electroretinography. A mutational analysis revealed a c.1312 dupC homozygous mutation in CNNM4, a genetic defect which had already been identified in other Kosovan families and putatively results in loss-of-function of the protein. The evaluation of six primary teeth using light and scanning electron microscopy as well as energy-dispersive X-ray spectroscopy showed that dental enamel was thin and deficient in mineral, suggesting a hypoplastic/hypomineralized type of amelogenesis imperfecta. The reduced mineral density of enamel was accompanied by decreased amounts of calcium, but significantly elevated levels of magnesium. In dentin, however, a similar mineral deficiency was associated with reduced magnesium and normal calcium levels. It is concluded that the c.1312 dupC mutation of CNNM4 results in mineralization defects of both enamel and dentin, which are associated with significantly abnormal magnesium concentrations. Thus, we could not disprove the hypothesis that a disrupted magnesium transport is involved in the development of the dental abnormalities observed in Jalili syndrome.
Resumo:
Wilson's disease (WD), an autosomal recessive disorder of copper transport with a broad range of genotypic and phenotypic characteristics, results from mutations in the ATP7B gene. Herein we report the results of mutation analysis of the ATP7B gene in a group of 118 Wilson disease families (236 chromosomes) prevalently of Italian origin. Using DNA sequencing we identified 83 disease-causing mutations. Eleven were novel, while twenty one already described mutations were identified in new populations in this study. In particular, mutation analysis of 13 families of Romanian origin showed a high prevalence of the p.H1069Q mutation (50%). Detection of new mutations in the ATP7B gene in new populations increases our capability of molecular analysis that is essential for early diagnosis and treatment of WD.