176 resultados para Frequency response function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species-specific chemical signals released through urine, sweat, saliva and feces are involved in communication between animals. Urinary biochemical constituents along with pheromones may contribute to variation across reproductive cycles and facilitate to estrus detection. Hence, the present study was designed to analyze such biochemical profiles, such as proteins, carbohydrates, lipids, fatty acids, in response with steroid hormones such as estradiol and progesterone. The experimental groups were normal, prepubertal, ovariectomized, and ovariectomized with estrogentreated female mice. In normal mice, the protein and lipid concentrations in urine were significantly higher in proestrus and estrus phases and the quantity of fatty acids was also comparatively higher in estrus. Furthermore, certain fatty acids, namely tridecanoic, palmitic and oleic acids, were present during proestrus and estrus phases, but were exclusively absent in ovariectomized mice. However, the carbohydrate level was equally maintained throughout the four phases of estrous cycle. For successful communication, higher concentrations of protein and specific fatty acids in estrus are directly involved. The significant increase in estradiol at estrus and progesterone at metestrus seems to be of greater importance in the expression pattern of biochemical constituents and may play a notable role in estrous cycle regulation. Thus, we conclude that the variations observed in the concentration of the biochemical constituents depend on the phase of the reproductive cycle as well as hormonal status of animals. The appearance of protein and specific fatty acids during estrus phase raises the possibility to use these as a urinary indicators for estrus detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatty acid oxygenation up-regulated 2 (fou2) mutant in Arabidopsis thaliana creates a gain-of-function allele in a non-selective cation channel encoded by the Two Pore Channel 1 (TPC1) gene. This mutant genetically implicates cation fluxes in the control of the positive feedback loop whereby jasmonic acid (JA) stimulates its own synthesis. In this study we observed extensive transcriptome reprogramming in healthy fou2 leaves closely resembling that induced by treatment with methyl jasmonate, biotic stresses and the potassium starvation response. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA-inducible proteins. In agreement with these analyses, epistasis studies performed by crossing fou2 with aos indicated that elevated levels of JA in fou2 are the major determinant of the mutant phenotype. In addition, generation of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants showed that the fou2 phenotype was only weakly affected by ABA levels and unaffected by mutations in NPR1 and ETR1. The results now suggest possible mechanisms whereby fou2 could induce JA synthesis/signaling early in the wound response. In contrast to fou2, transcriptome analysis of a loss-of-function allele of TPC1, tpc1-2, revealed no differential expression of JA biosynthesis genes in resting leaves. However, the analysis disclosed reduced mRNA levels of the pathogenesis-related genes PDF1.2a and THI2.1 in healthy and diseased tpc1-2 leaves. The results suggest that wild-type TPC1 contributes to their expression by mechanisms somewhat different from those affecting their expression in fou2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many experimental models, CD4+CD25+Foxp3+ regulatory T cells (nTreg) have been identifi ed as key players in promoting peripheral transplantation (Tx) tolerance. We have been focusing on therapies based on antigen-specifi c nTreg that can control effector T cells (Teff) and prevent allograft rejection. The use of nTreg in immunotherapeutic protocols for solid organ Tx is however limited by their overall low numbers as well as the low precursor frequency of alloantigen cross-reactive nTreg expected to be found in a normal individual. Moreover, although we previously described robust protocols to generate and expand antigen-specifi c nTreg in vitro, the process requires careful selection of highly pure nTreg and cumbersome ex-vivo manipulations, rendering this strategy not easily applicable in clinical solid organ Tx. In this study, we aimed to expand Treg directly in vivo and determine their suppressive function, effi cacy and stability in promoting donor-specifi c tolerance in a stringent murine Tx model. Our data suggest that IL-2-based therapies lead to a signifi cant increase of Treg in vivo. The expanded Treg suppressed Teff proliferation (albeit slightly less effi ciently than nTreg isolated from control mice) and allowed prolonged graft survival of major MHC-mismatched skin grafts in wild-type non-lymphopenic recipients. The expanded Treg alone were however not suffi cient to induce tolerance in stringent experimental conditions. Rapamycin reduced the frequency of Teff but did not impede expansion of Treg. Pro-infl ammatory stimuli hindered the expansion of Treg and resulted in an increase in the frequency of CD4+IFN-γ+ and CD4+IL17+ T cells. We propose that IL-2-based treatments would be an effi cient method for expanding functional Treg in vivo without affecting other immune cell populations, thereby favorably shifting the pool of alloreactive T cells towards regulation in response to an allograft. However, we also highlight some potential limitations of Treg expansion such as concomitant infl ammatory events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the functional role of individual alpha1-adrenergic (AR) subtypes in blood pressure (BP) regulation, we used mice lacking the alpha1B-AR and/or alpha1D-AR with the same genetic background and further studied their hemodynamic and vasoconstrictive responses. Both the alpha1D-AR knockout and alpha1B-/alpha1D-AR double knockout mice, but not the alpha1B-AR knockout mice, had significantly (p < 0.05) lower levels of basal systolic and mean arterial BP than wild-type mice in nonanesthetized condition, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. All mutants showed a significantly (p < 0.05) reduced catecholamine-induced pressor and vasoconstriction responses. It is noteworthy that the infusion of norepinephrine did not elicit any pressor response at all in alpha1B-/alpha1D-AR double knockout mice. In an attempt to further examine alpha1-AR subtype, which is involved in the genesis or maintenance of hypertension, BP after salt loading was monitored by tail-cuff readings and confirmed at the endpoint by direct intra-arterial recording. After salt loading, alpha1B-AR knockout mice developed a comparable level of hypertension to wild-type mice, whereas mice lacking alpha1D-AR had significantly (p < 0.05) attenuated BP and lower levels of circulating catecholamines. Our data indicated that alpha1B- and alpha1D-AR subtypes participate cooperatively in BP regulation; however, the deletion of the functional alpha1D-AR, not alpha1B-AR, leads to an antihypertensive effect. The study shows differential contributions of alpha1B- and alpha1D-ARs in BP regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary.  The outcome of hepatitis C virus (HCV) infection and the likelihood of a sustained virological response (SVR) to antiviral therapy depends on both viral and host characteristics. In vitro studies demonstrated that bile acids (BA) interfere with antiviral interferon effects. We investigate the influence of plasma BA concentrations and an ABCB11 polymorphism associated with lower transporter expression on viral load and SVR. Four hundred and fifty-one Caucasian HCV-patients treated with PEG-interferon and ribavirin were included in the study. ABCB11 1331T>C was genotyped, and plasma BA levels were determined. The 1331C allele was slightly overrepresented in HCV-patients compared to controls. In HCV-patients, a significant difference between patients achieving SVR vs non-SVR was observed for HCV-2/3 (5 vs 9 μm; P = 0.0001), while median BA levels in HCV-1 were marginally elevated. Normal BA levels <8 μm were significantly associated with SVR (58.3%vs 36.3%; OR 2.48; P = 0.0001). This difference was significant for HCV-2/3 (90.7%vs 67.6%; P = 0.002) but marginal in HCV-1 (38.7%vs 27.8%; P = 0.058). SVR rates were equivalent between ABCB11 genotypes for HCV-1, but increased for HCV-2/3 (TT 100%vs CC 78%; OR 2.01; P = 0.043). IL28B genotype had no influence on these associations. No correlation between BA levels and HCV RNA was detected for any HCV genotype. The higher allelic frequency of ABCB11 1331C in HCV-patients compared to controls may indirectly link increased BA to HCV chronicity. Our data support a role for BA as host factor affecting therapy response in HCV-2/3 patients, whereas a weaker association was found for HCV-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these beta-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P(tarA)-ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P(tarA)-int promoter is upregulated by the action of an extracytoplasmic function (ECF) sigma factor, sigma(M). In contrast to strain 168, sigma(M) is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of sigma(M) in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF sigma factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT¦Naturally acquired tumor-specific T-cells can be detected in most advanced cancer patients.¦Yet, they often fail to control or eliminate the disease, in contrast to many virus-specific CD8¦T lymphocytes. Therapeutic vaccines aim at inducing and boosting specific T-cells mediated¦immunity to reduce tumor burden. The properties of CD8 T-cells required for protection from¦infectious disease and cancer are only partially characterized.¦The objectives of this study were to assess effector functions, stage of differentiation and¦clonotype selection of tumor-reactive T lymphocytes following peptide vaccination in¦melanoma patients over time. Results were compared to protective viral-specific T-cell¦responses found in healthy individuals. We also characterized dominant versus low/non¦dominant T-cell clonotypes with the aim to further understand the in vivo function of each set¦of frequency-based specific T-cells.¦Here we developed and applied a novel approach for molecular and functional analysis of¦single T lymphocytes ex vivo. T-cell receptor (TCR) clonotype mapping revealed rapid¦selection and expansion of co-dominant T-cell clonotypes, which made up the majority of the¦highly differentiated "effector" T-cells, but only 25% of the less differentiated "effectormemory"¦cells, mostly composed of non-dominant clonotypes. Moreover, we show that¦advanced effector cell differentiation was indeed clonotype-dependent. Surprisingly, however,¦the acquisition of effector functions (cytokine production, killing) was clonotype-independent.¦Vaccination of melanoma patients with native peptide induced competent effector function in¦both dominant and non-dominant clonotypes, suggesting that most if not all clonotypes¦participating in a T-cell response have the potential to develop equal functional competence.¦In contrast, many T-cells remained poorly functional after vaccination with analog peptide,¦despite similar clonotype-dependent differentiation. Our findings show that the type of¦peptide vaccine has a critical influence on the selection and functional activation of the¦clonotypic T-cell repertoire. They also show that systematic assessment of individual T-cells¦identifies the cellular basis of immune responses, contributing to the rational development of¦vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. OBJECTIVE: We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF(25-75)) associated with improved air quality. METHODS: Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter < or = 10 microm (PM(10)) to each participant's residential history 12 months before the baseline and follow-up assessments. RESULTS: The effect of diminishing PM(10) exposure on FEF(25-75) decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-microg/m(3) decline in average PM(10) exposure over an 11-year period attenuated the average annual decline in FEF(25-75) by 21.33 mL/year (95% confidence interval, 10.57-32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38-22.06) among GA genotypes, and by 6.00 mL/year (-4.54 to 16.54) among AA genotypes. CONCLUSIONS: Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vascular plants, the endodermis establishes a protective diffusion barrier surrounding the vasculature preventing the passive, uncontrolled entry of nutrients absorbed by the plant. It does so by means of a differentiation feature, the "Casparian Strip" (CS), a highly localized cell wall impregnation made of lignin, which seals the extracellular space. Although the existence of this differentiation feature has been intensively described, the mechanisms establishing this hallmark remain obscure. In this work I report, the developmental sequence of events that leads to a differentiated endodermis, in the plant model Arabidopsis thaliana. In addition, my descriptive approach gave important insights as to how these cells define membrane domains involved in the directional transport of nutrients. I also participated in characterizing a new transmembrane protein family, the CASPs, localized to the membrane domain underlying the CS, which we accordingly named the Casparian Strip membrane Domain (CSD). Our molecular analysis indicates that these proteins drive CS establishment. To identify more molecular factors of CS establishment, I performed a forward genetic screen. This screen led to the identification of 11 endodermis permissive mutants, which we named schengen (sgn) mutants. The causative mutations have been mapped to 5 independent loci: SGN1 to SGN5. SGN1 and SGN3 encode Receptor Like Kinases involved in the correct establishment of the CSD. A lack of those kinases leads to an incomplete CSD, which gives rise to interrupted CS barriers. Interestingly, SGN1 seems to also regulate CSD positioning to the middle of endodermal transversal walls. SGN4 encodes an NADPH oxidase involved in lignin polymerization essential for CS formation. The sgn5 mutant induces extra divisions of cortical cells strongly affecting the cell identity, but also leading to incorrect differentiation. A thorough characterization of the sgn2 mutant will follow elsewhere, yet preliminary results indicate that SGN2 encodes an Acyl-CoA N-acyltransferase. . In summary, with my work I have contributed a first set of molecular players of Casparian strip formation and initiated their characterization. Eventually, this might lead to an understanding of the molecular mechanisms of CS establishment in A.thaliana . This in turn will hopefully help to better understand nutrient uptake in higher plants and their response to environmental stresses. - Au sein des plantes vasculaires, l'endoderme représente un tissu protecteur mettant en place une barrière imperméable, empêchant n'importe quel élément de rejoindre les tissus conducteurs par simple diffusion. Cette barrière, appelée « Cadre de Caspary », correspond à une lignification de la paroi de l'endoderme et donne lieu à un cloisonnement de l'espace intercellulaire. Bien que cet élément de différenciation soit décrit en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements aboutissant à l'établissement du cadre de Caspary chez la plante modèle Arabidopsis thaliana. De plus, ce travail apporte de nouvelles connaissances expliquant comment ces cellules définissent des domaines membranaires importants pour le transport des nutriments. Nous décrivons une nouvelle famille de protéines membranaires, les CASPs (« CAparian Strip membrane domain Proteins »), localisées dans un domaine membranaire longeant le cadre de Caspary : le domaine de Caspary (CSD). L'analyse moléculaire des CASPs indique qu'elles dirigent la formation du cadre de Caspary. Par ailleurs, une approche génétique directe nous a permis d'identifier 11 mutants ayant un endoderme perméable. Nous avons nommé ces mutants Schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) qui participent à la délimitation du CSD. L'absence de ces kinases aboutit à un domaine CSD incomplet, se traduisant par un cadre de Caspary discontinu. De plus, SGN1 semble réguler le positionnement du CSD au milieu de la paroi transversale de l'endoderme. SGN4 produit une enzyme de type NADPH oxydase impliquée dans la polymérisation du cadre de Caspary. Dans le mutant sgn5, on observe une division anormale des cellules du cortex créant ainsi une nouvelle couche cellulaire incapable d'achever sa différenciation en endoderme. Quant à la mutation sgn2, bien que nous pensons qu'elle affecte une Acyl-CoA N-acyltransferase, sa caractérisation ne sera réalisée que prochainement. Au final, ce travail procure de nouveaux éléments sur l'établissement du cadre de Caspary qui pourraient être importants afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles. - De par leur immobilité, les plantes terrestres n'ont pas d'autre choix que de puiser leurs ressources dans leur environnement direct. La plante extrait du sol les nutriments qui lui sont nécessaires et les redistribue grâce à des tissus conducteurs. Afin de ne pas s'intoxiquer, il est donc essentiel de pouvoir sélectionner les éléments entrant dans la racine. Etonnement, ce n'est pas la surface des racines qui permet ce contrôle mais un tissu interne appelé endoderme. Ce dernier forme une barrière imperméable qui entoure chaque cellule et crée une jointure permettant de bloquer le passage des éléments entre les cellules. Cette structure, appelée « cadre de Caspary », oblige les éléments à entrer dans les cellules de l'endoderme et à être ainsi sélectionnés. Bien que cette structure soit décrite en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements qui aboutit à la formation du cadre de Caspary chez la plante modèle Arabidopsis thaliana. Ce travail apporte également de nouvelles connaissances expliquant comment ces cellules définissent, organisent et dirigent le transport des nutriments. Nous décrivons comment certains éléments de la cellule, les protéines CASPs (CAsparian Strip membrane domain Proteins), sont organisées un domaine particulier des membranes afin de créer une plateforme de construction longeant le cadre de Caspary : le domaine de Caspary (CSD). Afin de déterminer ce qu'il se passerait si une plante ne possédait pas de cadre de Caspary, nous avons réalisé une mutagénèse, ou approche génétique directe, et identifié 11 mutants (individu ayant un gène défectueux conduisant à la perte d'une fonction) ayant un endoderme perméable. Nous avons nommé ces mutants schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. Les gènes SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) servant à l'établissement de la plateforme de construction. L'absence de ces kinases aboutit à une base incomplète, se traduisant par un cadre de Caspary discontinu. Qui plus est, la kinase SGN1 semble réguler le positionnement de la plateforme au milieu de l'endoderme. Le gène SGN4 est par contre, impliqué dans la construction à proprement dite du cadre de Caspary. Dans le mutant sgn5, on observe une nouvelle couche de cellules ressemblant à de l'endoderme mais incapable de former correctement une barrière identique au cadre de Caspary. Quant au dernier mutant, sgn2, bien que cette étude fournisse des indices permettant de comprendre pourquoi le mutant sgn2 est défectueux, nous n'expliquerons ce cas que prochainement. En résumé, ce travail procure de nouvelles connaissances sur l'établissement du cadre de Caspary qui pourraient être importantes afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Administration of ghrelin, a key peptide in the regulation of energy homeostasis, has been shown to decrease LH pulse frequency while concomitantly elevating cortisol levels. Because increased endogenous CRH release in stress is associated with an inhibition of reproductive function, we have tested here whether the pulsatile LH decrease after ghrelin may reflect an activated hypothalamic-pituitary-adrenal axis and be prevented by a CRH antagonist. After a 3-h baseline LH pulse frequency monitoring, five adult ovariectomized rhesus monkeys received a 5-h saline (protocol 1) or ghrelin (100-microg bolus followed by 100 microg/h, protocol 2) infusion. In protocols 3 and 4, animals were given astressin B, a nonspecific CRH receptor antagonist (0.45 mg/kg im) 90 min before ghrelin or saline infusion. Blood samples were taken every 15 min for LH measurements, whereas cortisol and GH were measured every 45 min. Mean LH pulse frequency during the 5-h ghrelin infusion was significantly lower than in all other treatments (P < 0.05) and when compared with the baseline period (P < 0.05). Pretreatment with astressin B prevented the decrease. Ghrelin stimulated cortisol and GH secretion, whereas astressin B pretreatment prevented the cortisol, but not the GH, release. Our data indicate that CRH release mediates the inhibitory effect of ghrelin on LH pulse frequency and suggest that the inhibitory impact of an insufficient energy balance on reproductive function may in part be mediated by the hypothalamic-pituitary-adrenal axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC. METHODS: Consensual pupil responses were explored in 44 healthy subjects aged between 26 and 68 years. A pupil response was recorded to a continuous 20 s light stimulus of 660 nm (red) or 470 nm (blue) both at 300 cd/m2 intensity (14.9 and 14.8 log photons/cm2/s, respectively). Additional recordings were performed using four 470 nm stimulus intensities of 3, 30, 100 and 300 cd/m2. The baseline pupil size was measured in darkness and results were adjusted for the baseline pupil and gender. The main outcome parameters were maximal and sustained pupil contraction amplitudes and the postillumination response assessed as area under the curve (AUC) over two time-windows: early (0-10 s after light termination) and late (10-30 s after light termination). Lens transmission was measured with an ocular fluorometer. RESULTS: The sustained pupil contraction and the early poststimulus AUC correlated positively with age (p=0.02, p=0.0014, respectively) for the blue light stimulus condition only.The maximal pupil contraction amplitude did not correlate to age either for bright blue or red light stimulus conditions.Lens transmission decreased linearly with age (p<0.0001). The pupil response was stable or increased with decreasing transmission, though only significantly for the early poststimulus AUC to 300 cd/m2 light (p=0.02). CONCLUSIONS: Age did not reduce, but rather enhance pupil responses mediated by ipRGC. The age related decrease of blue light transmission led to similar results, however, the effect of age was greater on these pupil responses than that of the lens transmission. Thus there must be other age related factors such as lens scatter and/or adaptive processes influencing the ipRGC mediated pupil response enhancement observed with advancing age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Melanin pigments provide the most widespread source of coloration in vertebrates, but the adaptive function of such traits remains poorly known. 2. In a wild population of tawny owls (Strix aluco), we investigated the relationships between plumage coloration, which varies continuously from dark to pale reddish, and the strength and cost of an induced immune response. 3. The degree of reddishness in tawny owl feather colour was positively correlated with the concentration of phaeomelanin and eumelanin pigments, and plumage coloration was highly heritable (h(2) = 0.93). No carotenoids were detected in the feathers. 4. In mothers, the degree of melanin-based coloration was associated with antibody production against a vaccine, with dark reddish females maintaining a stronger level of antibody for a longer period of time compared to pale reddish females, but at a cost in terms of greater loss of body mass. 5. A cross-fostering experiment showed that, independent of maternal coloration, foster chicks reared by vaccinated mothers were lighter than those reared by nonvaccinated mothers. Hence, even though dark reddish mothers suffered a stronger immune cost than pale reddish mothers, this asymmetric cost was not translated to offspring growth. 6. Our study suggests that different heritable melanin-based colorations are associated with alternative strategies to resist parasite attacks, with dark reddish individuals investing more resources towards the humoral immune response than lightly reddish conspecifics.