47 resultados para Fractional Difference


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The alteration of brain maturation in preterm infants contributes to neurodevelopmental disabilities during childhood. Serial imaging allows understanding of the mechanisms leading to dysmaturation in the preterm brain. The purpose of the present study was to provide reference quantitative MR imaging measures across time in preterm infants, by using ADC, fractional anisotropy, and T1 maps obtained by using the magnetization-prepared dual rapid acquisition of gradient echo technique. MATERIALS AND METHODS: We included preterm neonates born at <30 weeks of gestational age without major brain lesions on early cranial sonography and performed 3 MRIs (3T) from birth to term-equivalent age. Multiple measurements (ADC, fractional anisotropy, and T1 relaxation) were performed on each examination in 12 defined white and gray matter ROIs. RESULTS: We acquired 107 MRIs (35 early, 33 intermediary, and 39 at term-equivalent age) in 39 cerebral low-risk preterm infants. Measures of T1 relaxation time showed a gradual and significant decrease with time in a region- and hemispheric-specific manner. ADC values showed a similar decline with time, but with more variability than T1 relaxation. An increase of fractional anisotropy values was observed in WM regions and inversely a decrease in the cortex. CONCLUSIONS: The gradual change with time reflects the progressive maturation of the cerebral microstructure in white and gray matter. Our study provides reference trajectories from 25 to 40 weeks of gestation of T1 relaxation, ADC, and fractional anisotropy values in low-risk preterm infants. We speculate that deviation thereof might reflect disturbed cerebral maturation; the correlation of this disturbed maturation with neurodevelopmental outcome remains to be addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: Compensatory increases in FGF23 with increasing phosphate intake may adversely impact health. However, population and clinical studies examining the link between phosphate intake and FGF23 levels have focused mainly on populations living in highly industrialized societies in which phosphate exposure may be homogenous. OBJECTIVE: Contrast dietary phosphate intake, urinary measures of phosphate excretion and FGF23 levels across populations that differ by level of industrialization. DESIGN: Cross-sectional analysis of three populations Setting: Maywood, IL, U.S., Mah|fe Island, Seychelles, and Kumasi, Ghana Participants: Adults with African ancestry aged 25-45 years Main Outcome: Fibroblast growth factor 23 (FGF23) levels Results: The mean age was 35.1 (6.3) years and 47.9% were male. Mean phosphate intake and fractional excretion of phosphate were significantly higher in the U.S. vs. Ghana while no significant difference in phosphate intake or fractional excretion of phosphate was noted between U.S. and Seychelles for men or women. Overall, median FGF23 values were 57.41 RU/ml (IQR 43.42, 75.09) in U.S., 42.49 RU/ml (IQR 33.06, 55.39) in Seychelles and 33.32 RU/ml (IQR 24.83, 47.36) in Ghana. In the pooled sample, FGF23 levels were significantly and positively correlated with dietary phosphate intake (r=0.11; P < 0.001), and the fractional excretion of phosphate (r=0.13; P < 0.001) but not with plasma phosphate levels (-0.001; P = 0.8). Dietary phosphate intake was significantly and positively associated with the fractional excretion of phosphate (r=0.23; P < 0.001). CONCLUSION: The distribution of FGF23 levels in a given population may be influenced by the level of industrialization, likely due to differences in access to foods preserved with phosphate additives.