82 resultados para Flynn and Wall kinetic model
Resumo:
Carbon and oxygen isotope studies of the host and gangue carbonates of Mississippi Valley-type zinc-lead deposits in the San Vicente District hosted in the Upper Triassic to Lower Jurassic dolostones of the Pucara basin (central Peru) were used to constrain models of the ore formation. A mixing model between an incoming hot saline slightly acidic radiogenic (Pb, Sr) fluid and the native formation water explains the overall isotopic variation (delta(13)C = - 11.5 to + 2.5 parts per thousand relative to PDB and delta(18)O = + 18.0 to + 24.3 parts per thousand relative to SMOW) of the carbonate generations. The dolomites formed during the main ore stage show a narrower range (delta(13)C = - 0.1 to + 1.7 parts per thousand and delta(18)O = + 18.7 to + 23.4 parts per thousand) which is explained by exchange between the mineralizing fluids and the host carbonates combined with changes in temperature and pressure. This model of fluid-rock interaction explains the pervasive alteration of the host dolomite I and precipitation of sphalerite I. The open-space filling hydrothermal white sparry dolomite and the coexisting sphalerite II formed by prolonged fluid-host dolomite interaction and limited CO2 degassing. Late void-filling dolomite III (or calcite) and the associated sphalerite III formed as the consequence of CO2 degassing and concomitant pH increase of a slightly acidic ore fluid. Widespread brecciation is associated to CO2 outgassing. Consequently, pressure variability plays a major role in the ore precipitation during the late hydrothermal events in San Vicente. The presence of native sulfur associated with extremely carbon-light calcites replacing evaporitic sulfates (e.g., delta(13)C = - 11.5 parts per thousand), altered native organic matter and heavier hydrothermal bitumen (from - 27.0 to - 23.0 parts per thousand delta(13)C) points to thermochemical reduction of sulfate and/or thiosulfate. The delta(13)C- and delta(18)O-values of the altered host dolostone and hydrothermal carbonates, and the carbon isotope composition of the associated organic matter show a strong regional homogeneity. These results coupled with the strong mineralogical and petrographic similarities of the different MVT occurrences perhaps reflects the fact that the mineralizing processes were similar in the whole San Vicente belt, suggesting the existence of a common regional mineralizing hydrothermal system with interconnected plumbing.
Resumo:
Abstract : The existence of a causal relationship between the spatial distribution of living organisms and their environment, in particular climate, has been long recognized and is the central principle of biogeography. In turn, this recognition has led scientists to the idea of using the climatic, topographic, edaphic and biotic characteristics of the environment to predict its potential suitability for a given species or biological community. In this thesis, my objective is to contribute to the development of methodological improvements in the field of species distribution modeling. More precisely, the objectives are to propose solutions to overcome limitations of species distribution models when applied to conservation biology issues, or when .used as an assessment tool of the potential impacts of global change. The first objective of my thesis is to contribute to evidence the potential of species distribution models for conservation-related applications. I present a methodology to generate pseudo-absences in order to overcome the frequent lack of reliable absence data. I also demonstrate, both theoretically (simulation-based) and practically (field-based), how species distribution models can be successfully used to model and sample rare species. Overall, the results of this first part of the thesis demonstrate the strong potential of species distribution models as a tool for practical applications in conservation biology. The second objective this thesis is to contribute to improve .projections of potential climate change impacts on species distributions, and in particular for mountain flora. I develop and a dynamic model, MIGCLIM, that allows the implementation of dispersal limitations into classic species distribution models and present an application of this model to two virtual species. Given that accounting for dispersal limitations requires information on seed dispersal, distances, a general methodology to classify species into broad dispersal types is also developed. Finally, the M~GCLIM model is applied to a large number of species in a study area of the western Swiss Alps. Overall, the results indicate that while dispersal limitations can have an important impact on the outcome of future projections of species distributions under climate change scenarios, estimating species threat levels (e.g. species extinction rates) for a mountainous areas of limited size (i.e. regional scale) can also be successfully achieved when considering dispersal as unlimited (i.e. ignoring dispersal limitations, which is easier from a practical point of view). Finally, I present the largest fine scale assessment of potential climate change impacts on mountain vegetation that has been carried-out to date. This assessment involves vegetation from 12 study areas distributed across all major western and central European mountain ranges. The results highlight that some mountain ranges (the Pyrenees and the Austrian Alps) are expected to be more affected by climate change than others (Norway and the Scottish Highlands). The results I obtain in this study also indicate that the threat levels projected by fine scale models are less severe than those derived from coarse scale models. This result suggests that some species could persist in small refugias that are not detected by coarse scale models. Résumé : L'existence d'une relation causale entre la répartition des espèces animales et végétales et leur environnement, en particulier le climat, a été mis en évidence depuis longtemps et est un des principes centraux en biogéographie. Ce lien a naturellement conduit à l'idée d'utiliser les caractéristiques climatiques, topographiques, édaphiques et biotiques de l'environnement afin d'en prédire la qualité pour une espèce ou une communauté. Dans ce travail de thèse, mon objectif est de contribuer au développement d'améliorations méthodologiques dans le domaine de la modélisation de la distribution d'espèces dans le paysage. Plus précisément, les objectifs sont de proposer des solutions afin de surmonter certaines limitations des modèles de distribution d'espèces dans des applications pratiques de biologie de la conservation ou dans leur utilisation pour évaluer l'impact potentiel des changements climatiques sur l'environnement. Le premier objectif majeur de mon travail est de contribuer à démontrer le potentiel des modèles de distribution d'espèces pour des applications pratiques en biologie de la conservation. Je propose une méthode pour générer des pseudo-absences qui permet de surmonter le problème récurent du manque de données d'absences fiables. Je démontre aussi, de manière théorique (par simulation) et pratique (par échantillonnage de terrain), comment les modèles de distribution d'espèces peuvent être utilisés pour modéliser et améliorer l'échantillonnage des espèces rares. Ces résultats démontrent le potentiel des modèles de distribution d'espèces comme outils pour des applications de biologie de la conservation. Le deuxième objectif majeur de ce travail est de contribuer à améliorer les projections d'impacts potentiels des changements climatiques sur la flore, en particulier dans les zones de montagnes. Je développe un modèle dynamique de distribution appelé MigClim qui permet de tenir compte des limitations de dispersion dans les projections futures de distribution potentielle d'espèces, et teste son application sur deux espèces virtuelles. Vu que le fait de prendre en compte les limitations dues à la dispersion demande des données supplémentaires importantes (p.ex. la distance de dispersion des graines), ce travail propose aussi une méthode de classification simplifiée des espèces végétales dans de grands "types de disperseurs", ce qui permet ainsi de d'obtenir de bonnes approximations de distances de dispersions pour un grand nombre d'espèces. Finalement, j'applique aussi le modèle MIGCLIM à un grand nombre d'espèces de plantes dans une zone d'études des pré-Alpes vaudoises. Les résultats montrent que les limitations de dispersion peuvent avoir un impact considérable sur la distribution potentielle d'espèces prédites sous des scénarios de changements climatiques. Cependant, quand les modèles sont utilisés pour évaluer les taux d'extinction d'espèces dans des zones de montages de taille limitée (évaluation régionale), il est aussi possible d'obtenir de bonnes approximations en considérant la dispersion des espèces comme illimitée, ce qui est nettement plus simple d'un point dé vue pratique. Pour terminer je présente la plus grande évaluation à fine échelle d'impact potentiel des changements climatiques sur la flore des montagnes conduite à ce jour. Cette évaluation englobe 12 zones d'études réparties sur toutes les chaines de montages principales d'Europe occidentale et centrale. Les résultats montrent que certaines chaines de montagnes (les Pyrénées et les Alpes Autrichiennes) sont projetées comme plus sensibles aux changements climatiques que d'autres (les Alpes Scandinaves et les Highlands d'Ecosse). Les résultats obtenus montrent aussi que les modèles à échelle fine projettent des impacts de changement climatiques (p. ex. taux d'extinction d'espèces) moins sévères que les modèles à échelle large. Cela laisse supposer que les modèles a échelle fine sont capables de modéliser des micro-niches climatiques non-détectées par les modèles à échelle large.
Resumo:
In vitro studies have shown that stimulation of alpha1-adrenoceptors (ARs) directly induces proliferation, hypertrophy, and migration of arterial smooth muscle cells and adventitial fibroblasts. In vivo studies confirmed these findings and showed that catecholamine trophic activity becomes excessive after experimental balloon injury and contributes to neointimal growth, adventitial thickening, and lumen loss. However, past studies have been limited by selectivity of pharmacological agents. The aim of this study, in which mice devoid of norepinephrine and epinephrine synthesis [dopamine beta-hydroxylase (DBH-/-)] or deficient in alpha1-AR subtypes expressed in murine carotid (alpha1B-AR-/- and alpha1D-AR-/-) were used, was to test the hypothesis that catecholamines contribute to wall hypertrophy after injury. At 3 wk after injury of wild-type mice, lumen area and carotid circumference increased significantly, and hypertrophy of media and adventitia was in excess of that needed to restore circumferential wall stress to normal. In DBH-/- and alpha1B-AR-/- mice, increases in lumen area, circumference, and hypertrophy of the media and adventitia were reduced by 50-91%, resulting in restoration of wall tension to nearly normal (DBH-/-) or normal (alpha1B-AR-/-). In contrast, in alpha1D-AR-/- mice, increases in lumen area, circumference, and wall hypertrophy were unaffected and wall thickening remained in excess of that required to return tension to normal. When examined 5 days after injury, proliferation and leukocyte infiltration were inhibited in DBH-/- mice. These studies suggest that the trophic effects of catecholamines are mediated primarily by alpha1B-ARs in mouse carotid and contribute to hypertrophic growth after vascular injury.
Resumo:
CD4+CD25+ regulatory T cells (Tregs) play a critical role in the prevention of autoimmune diseases as well as in the induction and maintenance of dominant tolerance in transplantation models. While their suppressive function has been extensively studied in vitro, their homeostasis and mechanisms of immunoregulation still remain to be clarifi ed in vivo. Using a murine adoptive transfer and skin allograft model, we analysed the expansion, effector function and traffi cking of effector T cells in the presence or absence of donor-specifi c Tregs. Although hyporesponsive to allogeneic and polyclonal stimulation in vitro, transferred Tregs survived and expanded, in response to an allograft in vivo. When co-transferred with naive CD4+CD25- effector T cells, they specifi cally prevented donor but not 3rd party allograft rejection by inhibiting the production of effector cytokines rather than the proliferation of effector T cells in response to alloantigens. The co-transfer of donor-specifi c Tregs did not affect the homing of effector T cells towards the graft draining lymph nodes, but it markedly reduced the infi ltration of the allograft by these pathogenic cells. Furthermore, in recipients where donor-specifi c transplantation tolerance was induced, Tregs preferentially accumulated in the allograft draining lymph nodes and within the grafted skin itself. Taken together, our results suggest that the suppression of graft rejection is an active process that involves the persistent presence of Tregs at the site of antigenic challenge.
Resumo:
Aliment Pharmacol Ther 2011; 33: 1162-1172 SUMMARY: Background Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis and hepatocellular carcinoma and the identification of the predictors of response to antiviral therapy is an important clinical issue. Aim To determine the independent contribution of factors including IL28B polymorphisms, IFN-gamma inducible protein-10 (IP-10) levels and the homeostasis model assessment of insulin resistance (HOMA-IR) score in predicting response to therapy in chronic hepatitis C (CHC). Methods Multivariate analysis of factors predicting rapid (RVR) and sustained (SVR) virological response in 280 consecutive, treatment-naive CHC patients treated with peginterferon alpha and ribavirin in a prospective multicentre study. Results Independent predictors of RVR were HCV RNA <400 000 IU/mL (OR 11.37; 95% CI 3.03-42.6), rs12980275 AA (OR 7.09; 1.97-25.56) and IP-10 (OR 0.04; 0.003-0.56) in HCV genotype 1 patients and lower baseline γ-glutamyl-transferase levels (OR = 0.02; 0.0009-0.31) in HCV genotype 3 patients. Independent predictors of SVR were rs12980275 AA (OR 9.68; 3.44-27.18), age <40 years (OR = 4.79; 1.50-15.34) and HCV RNA <400 000 IU/mL (OR 2.74; 1.03-7.27) in HCV genotype 1 patients and rs12980275 AA (OR = 6.26; 1.98-19.74) and age <40 years (OR 5.37; 1.54-18.75) in the 88 HCV genotype 1 patients without a RVR. RVR was by itself predictive of SVR in HCV genotype 1 patients (OR 33.0; 4.06-268.32) and the only independent predictor of SVR in HCV genotype 2 (OR 9.0, 1.72-46.99) or genotype 3 patients (OR 7.8, 1.43-42.67). Conclusions In HCV genotype 1 patients, IL28B polymorphisms, HCV RNA load and IP-10 independently predict RVR. The combination of IL28B polymorphisms, HCV RNA level and age may yield more accurate pre-treatment prediction of SVR. HOMA-IR score is not associated with viral response.
Resumo:
BACKGROUND AND OBJECTIVES: The estimated GFR (eGFR) is important in clinical practice. To find the best formula for eGFR, this study assessed the best model of correlation between sinistrin clearance (iGFR) and the solely or combined cystatin C (CysC)- and serum creatinine (SCreat)-derived models. It also evaluated the accuracy of the combined Schwartz formula across all GFR levels. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Two hundred thirty-eight iGFRs performed between January 2012 and April 2013 for 238 children were analyzed. Regression techniques were used to fit the different equations used for eGFR (i.e., logarithmic, inverse, linear, and quadratic). The performance of each model was evaluated using the Cohen κ correlation coefficient and the percentage reaching 30% accuracy was calculated. RESULTS: The best model of correlation between iGFRs and CysC is linear; however, it presents a low κ coefficient (0.24) and is far below the Kidney Disease Outcomes Quality Initiative targets to be validated, with only 84% of eGFRs reaching accuracy of 30%. SCreat and iGFRs showed the best correlation in a fitted quadratic model with a κ coefficient of 0.53 and 93% accuracy. Adding CysC significantly (P<0.001) increased the κ coefficient to 0.56 and the quadratic model accuracy to 97%. Therefore, a combined SCreat and CysC quadratic formula was derived and internally validated using the cross-validation technique. This quadratic formula significantly outperformed the combined Schwartz formula, which was biased for an iGFR≥91 ml/min per 1.73 m(2). CONCLUSIONS: This study allowed deriving a new combined SCreat and CysC quadratic formula that could replace the combined Schwartz formula, which is accurate only for children with moderate chronic kidney disease.
Resumo:
Some patients infected with human immunodeficiency virus (HIV) who are experiencing antiretroviral treatment failure have persistent improvement in CD4+ T cell counts despite high plasma viremia. To explore the mechanisms responsible for this phenomenon, 2 parameters influencing the dynamics of CD4+ T cells were evaluated: death of mature CD4+ T cells and replenishment of the CD4+ T cell pool by the thymus. The improvement in CD4+ T cells observed in patients with treatment failure was not correlated with spontaneous, Fas ligand-induced, or activation-induced T cell death. In contrast, a significant correlation between the improvement in CD4+ T cell counts and thymic output, as assessed by measurement of T cell receptor excision circles, was observed. These observations suggest that increased thymic output contributes to the dissociation between CD4+ T cell counts and viremia in patients failing antiretroviral therapy and support a model in which drug-resistant HIV strains may have reduced replication rates and pathogenicity in the thymus.
Resumo:
An accurate assessment of the rising ambient temperature by plant cells is crucial for the timely activation of various molecular defences before the appearance of heat damage. Recent findings have allowed a better understanding of the early cellular events that take place at the beginning of mild temperature rise, to timely express heat-shock proteins (HSPs), which will, in turn, confer thermotolerance to the plant. Here, we discuss the key components of the heat signalling pathway and suggest a model in which a primary sensory role is carried out by the plasma membrane and various secondary messengers, such as Ca(2+) ions, nitric oxide (NO) and hydrogen peroxide (H(2) O(2) ). We also describe the role of downstream components, such as calmodulins, mitogen-activated protein kinases and Hsp90, in the activation of heat-shock transcription factors (HSFs). The data gathered for land plants suggest that, following temperature elevation, the heat signal is probably transduced by several pathways that will, however, coalesce into the final activation of HSFs, the expression of HSPs and the onset of cellular thermotolerance.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
BACKGROUND: Direct noninvasive visualization of the coronary vessel wall may enhance risk stratification by quantifying subclinical coronary atherosclerotic plaque burden. We sought to evaluate high-resolution black-blood 3D cardiovascular magnetic resonance (CMR) imaging for in vivo visualization of the proximal coronary artery vessel wall. METHODS AND RESULTS: Twelve adult subjects, including 6 clinically healthy subjects and 6 patients with nonsignificant coronary artery disease (10% to 50% x-ray angiographic diameter reduction) were studied with the use of a commercial 1.5 Tesla CMR scanner. Free-breathing 3D coronary vessel wall imaging was performed along the major axis of the right coronary artery with isotropic spatial resolution (1.0x1.0x1.0 mm(3)) with the use of a black-blood spiral image acquisition. The proximal vessel wall thickness and luminal diameter were objectively determined with an automated edge detection tool. The 3D CMR vessel wall scans allowed for visualization of the contiguous proximal right coronary artery in all subjects. Both mean vessel wall thickness (1.7+/-0.3 versus 1.0+/-0.2 mm) and wall area (25.4+/-6.9 versus 11.5+/-5.2 mm(2)) were significantly increased in the patients compared with the healthy subjects (both P<0.01). The lumen diameter (3.6+/-0.7 versus 3.4+/-0.5 mm, P=0.47) and lumen area (8.9+/-3.4 versus 7.9+/-3.5 mm(2), P=0.47) were similar in both groups. CONCLUSIONS: Free-breathing 3D black-blood coronary CMR with isotropic resolution identified an increased coronary vessel wall thickness with preservation of lumen size in patients with nonsignificant coronary artery disease, consistent with a "Glagov-type" outward arterial remodeling. This novel approach has the potential to quantify subclinical disease.
Resumo:
Résumé : Le glioblastome (GBM, WHO grade IV) est la tumeur cérébrale primaire la plus fréquente et la plus maligne, son pronostic reste très réservé et sa réponse aux différents traitements limitée. Récemment, une étude clinique randomisée (EORTC 26981/NCIC CE.3) a démontré que le traitement combiné de temozolomide et radiothérapie (RT/TMZ) est le meilleur dans les cas de GBM nouvellement diagnostiqués [1]. Cependant, seul un sous-groupe de patients bénéficie du traitement RT/TMZ et même parmi eux, leur survie reste très limitée. Pour tenter de mieux comprendre les réponses au traitement RT/TMZ, la biologie du GBM, identifier d'autres facteurs de résistance et découvrir de nouvelles cibles aux traitements, nous avons conduit une analyse moléculaire étendue à 73 patients inclus dans cette étude clinique. Nous avons complété les résultats moléculaires déjà obtenus par un profil génomique du nombre de copies par Array Comparative Genomic Hybridization. Afin d'atteindre nos objectifs, nous avons analysé en parallèle les données cliniques des patients et leurs profils moléculaires. Nos résultats confirment des analyses connues dans le domaine des aberrations du nombre de copies (CNA) et de profils du glioblastome. Nous avons observé une bonne corrélation entre le CNA génomique et l'expression de l'ARN messager dans le glioblastome et identifié un nouveau modèle de CNA du chromosome 7 pouvant présenter un intérêt clinique. Nous avons aussi observé par l'analyse du CNA que moins de 10% des glioblastomes conservent leurs mécanismes de suppression de tumeurs p53 et Rb1. Nous avons aussi observé que l'amplification du CDK4 peut constituer un facteur supplémentaire de résistance au traitement RT/TMZ, cette observation nécessite confirmation sur un plus grand nombre d'analyses. Nous avons montré que dans notre analyse des profils moléculaires et cliniques, il n'est pas possible de différencier le GBM à composante oligodendrogliale (GBM-O) du glioblastome. En superposant les profils moléculaires et les modèles expérimentaux in vitro, nous avons identifié WIF-1 comme un gène suppresseur de tumeur probable et une activation du signal WNT dans la pathologie du glioblastome. Ces observations pourraient servir à une meilleure compréhension de cette maladie dans le futur. Abstract : Glioblastoma, (GBM, WHO grade IV) is the most malignant and most frequent primary brain tumor with a very poor prognosis and response to therapy. A recent randomized clinical trial (EORTC26981/NCIC CE.3) established RT/TMZ as the 1St effective chemo-radiation therapy in newly diagnosed GBM [1]. However only a genetic subgroup of patients benefit from RT/TMZ and even in this subgroup overall survival remains very dismal. To explain the observed response to RT/TMZ, have a better understanding of GBM biology, identify other resistance factors and discover new drugable targets a comprehensive molecular analysis was performed in 73 of these GBM trial cohort. We complemented the available molecular data with a genomic copy number profiling by Array Comparative Genomic Hybridization. We proceeded to align the molecular profiles and the Clinical data, to meet our project objectives. Our data confirm known GBM Copy Number Aberrations and profiles. We observed a good correlation of genomic CN and mRNA expression in GBM, and identified new interesting CNA pattern for chromosome 7 with a potential clinical value. We also observed that by copy number aberration data alone, less than 10% of GBM have an intact p53 and Rb1 tumor .suppressor pathways. We equally observed that CDK4 amplification might constitute an additional RT/TMZ resistant factor, an observation that will need confirmation in a larger data set. We show that the molecular and clinical profiles in our data set, does not support the identification of GBM-O as a new entity in GBM. By combining the molecular profiles and in vitro model experiments we identify WIF1 as a potential GBM TSG and an activated WNT signaling as a pathologic event in GBM worth incorporation in attempts to better understand and impact outcome in this disease.
Resumo:
The T cell response to major histocompatibility complex (MHC) alloantigens occurs via two main pathways. The direct pathway involves the recognition of intact allogeneic MHC:peptide complexes on donor cells and provokes uniquely high frequencies of responsive T cells. The indirect response results from alloantigens being processed like any other protein antigen and presented as peptide by autologous antigen-presenting cells. The frequencies of T cells with indirect allospecificity are orders of magnitude lower and comparable to other peptide-specific responses. In this study, we explored the contributions of naïve and memory CD4(+) T cells to these two pathways. Using an adoptive transfer and skin transplantation model we found that naive and memory CD4(+) T cells, both naturally occurring and induced by sensitization with multiple third-party alloantigens, contributed equally to graft rejection when only the direct pathway was operative. In contrast, the indirect response was predominantly mediated by the naïve subset. Elimination of regulatory CD4(+)CD25(+) T cells enabled memory cells to reject grafts through the indirect pathway, but at a much slower tempo than for naïve cells. These findings have implications for better targeting of immunosuppression to inhibit immediate and later forms of alloimmunity.
Resumo:
BACKGROUND: The in vivo transfer of naked plasmid DNA into organs such as muscles is commonly used to assess the expression of prophylactic or therapeutic genes in animal disease models. RESULTS: In this study, we devised vectors allowing a tight regulation of transgene expression in mice from such non-viral vectors using a doxycycline-controlled network of activator and repressor proteins. Using these vectors, we demonstrate proper physiological response as consequence of the induced expression of two therapeutically relevant proteins, namely erythropoietin and utrophin. Kinetic studies showed that the induction of transgene expression was only transient, unless epigenetic regulatory elements termed Matrix Attachment Regions, or MAR, were inserted upstream of the regulated promoters. Using episomal plasmid rescue and quantitative PCR assays, we observed that similar amounts of plasmids remained in muscles after electrotransfer with or without MAR elements, but that a significant portion had integrated into the muscle fiber chromosomes. Interestingly, the MAR elements were found to promote plasmid genomic integration but to oppose silencing effects in vivo, thereby mediating long-term expression. CONCLUSIONS: This study thus elucidates some of the determinants of transient or sustained expression from the use of non-viral regulated vectors in vivo.
Resumo:
In a recent paper, Traulsen and Nowak use a multilevel selection model to show that cooperation can be favored by group selection in finite populations [Traulsen A, Nowak M (2006) Proc Natl Acad Sci USA 103:10952-10955]. The authors challenge the view that kin selection may be an appropriate interpretation of their results and state that group selection is a distinctive process "that permeates evolutionary processes from the emergence of the first cells to eusociality and the economics of nations." In this paper, we start by addressing Traulsen and Nowak's challenge and demonstrate that all their results can be obtained by an application of kin selection theory. We then extend Traulsen and Nowak's model to life history conditions that have been previously studied. This allows us to highlight the differences and similarities between Traulsen and Nowak's model and typical kin selection models and also to broaden the scope of their results. Our retrospective analyses of Traulsen and Nowak's model illustrate that it is possible to convert group selection models to kin selection models without disturbing the mathematics describing the net effect of selection on cooperation.