123 resultados para Filtering theory
Resumo:
A critical feature of cooperative animal societies is the reproductive skew, a shorthand term for the degree to which a dominant individual monopolizes overall reproduction in the group. Our theoretical analysis of the evolutionarily stable skew in matrifilial (i.e., mother-daughter) societies, in which relatednesses to offspring are asymmetrical, predicts that reproductive skews in such societies should tend to be greater than those of semisocial societies (i.e., societies composed of individuals of the same generation, such as siblings), in which relatednesses to offspring are symmetrical. Quantitative data on reproductive skews in semisocial and matrifilial associations within the same species for 17 eusocial Hymenoptera support this prediction. Likewise, a survey of reproductive partitioning within 20 vertebrate societies demonstrates that complete reproductive monopoly is more likely to occur in matrifilial than in semisocial societies, also as predicted by the optimal skew model.
Resumo:
We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1-16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.
Resumo:
Cannabis use among adolescents and young adults has become a major public health challenge. Several European countries are currently developing short screening instruments to identify 'problematic' forms of cannabis use in general population surveys. One such instrument is the Cannabis Use Disorders Identification Test (CUDIT), a 10-item questionnaire based on the Alcohol Use Disorders Identification Test. Previous research found that some CUDIT items did not perform well psychometrically. In the interests of improving the psychometric properties of the CUDIT, this study replaces the poorly performing items with new items that specifically address cannabis use. Analyses are based on a sub-sample of 558 recent cannabis users from a representative population sample of 5722 individuals (aged 13-32) who were surveyed in the 2007 Swiss Cannabis Monitoring Study. Four new items were added to the original CUDIT. Psychometric properties of all 14 items, as well as the dimensionality of the supplemented CUDIT were then examined using Item Response Theory. Results indicate the unidimensionality of CUDIT and an improvement in its psychometric performance when three original items (usual hours being stoned; injuries; guilt) are replaced by new ones (motives for using cannabis; missing out leisure time activities; difficulties at work/school). However, improvements were limited to cannabis users with a high problem score. For epidemiological purposes, any further revision of CUDIT should therefore include a greater number of 'easier' items.
Resumo:
In a weighted spatial network, as specified by an exchange matrix, the variances of the spatial values are inversely proportional to the size of the regions. Spatial values are no more exchangeable under independence, thus weakening the rationale for ordinary permutation and bootstrap tests of spatial autocorrelation. We propose an alternative permutation test for spatial autocorrelation, based upon exchangeable spatial modes, constructed as linear orthogonal combinations of spatial values. The coefficients obtain as eigenvectors of the standardised exchange matrix appearing in spectral clustering, and generalise to the weighted case the concept of spatial filtering for connectivity matrices. Also, two proposals aimed at transforming an acessibility matrix into a exchange matrix with with a priori fixed margins are presented. Two examples (inter-regional migratory flows and binary adjacency networks) illustrate the formalism, rooted in the theory of spectral decomposition for reversible Markov chains.
Resumo:
This article builds on the recent policy diffusion literature and attempts to overcome one of its major problems, namely the lack of a coherent theoretical framework. The literature defines policy diffusion as a process where policy choices are interdependent, and identifies several diffusion mechanisms that specify the link between the policy choices of the various actors. As these mechanisms are grounded in different theories, theoretical accounts of diffusion currently have little internal coherence. In this article we put forward an expected-utility model of policy change that is able to subsume all the diffusion mechanisms. We argue that the expected utility of a policy depends on both its effectiveness and the payoffs it yields, and we show that the various diffusion mechanisms operate by altering these two parameters. Each mechanism affects one of the two parameters, and does so in distinct ways. To account for aggregate patterns of diffusion, we embed our model in a simple threshold model of diffusion. Given the high complexity of the process that results, strong analytical conclusions on aggregate patterns cannot be drawn without more extensive analysis which is beyond the scope of this article. However, preliminary considerations indicate that a wide range of diffusion processes may exist and that convergence is only one possible outcome.
Resumo:
Detecting local differences between groups of connectomes is a great challenge in neuroimaging, because the large number of tests that have to be performed and the impact on multiplicity correction. Any available information should be exploited to increase the power of detecting true between-group effects. We present an adaptive strategy that exploits the data structure and the prior information concerning positive dependence between nodes and connections, without relying on strong assumptions. As a first step, we decompose the brain network, i.e., the connectome, into subnetworks and we apply a screening at the subnetwork level. The subnetworks are defined either according to prior knowledge or by applying a data driven algorithm. Given the results of the screening step, a filtering is performed to seek real differences at the node/connection level. The proposed strategy could be used to strongly control either the family-wise error rate or the false discovery rate. We show by means of different simulations the benefit of the proposed strategy, and we present a real application of comparing connectomes of preschool children and adolescents.
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).