160 resultados para Field instrumentation
Resumo:
Monitoring of internal exposure for nuclear medicine workers requires frequent measurements due to the short physical half-lives of most radionuclides used in this field. The aim of this study was to develop screening measurements performed at the workplace by local staff using standard laboratory instrumentation, to detect whether potential intake has occurred. Such measurements do not enable to determine the committed effective dose, but are adequate to verify that a given threshold is not exceeded. For radioiodine, i.e. (123)I, (124)I, (125)I and (131)I, a calibrated surface contamination monitor is placed in front of the thyroid to detect whether the activity threshold has been exceeded. For radionuclides with very short physical half-lives (≤6 h), such as (99m)Tc and those used in positron emission tomography imaging, i.e. (11)C, (15)O, (18)F and (68)Ga, screening procedures consist in performing daily measurements of the ambient dose rate in front of the abdomen. Other gamma emitters used for imaging, i.e. (67)Ga, (111)In and (201)Tl, are measured with a scintillation detector located in front of the thorax. For pure beta emitters, i.e. (90)Y and (169)Er, as well as beta emitters with low-intensity gamma rays, i.e. (153)Sm, (177)Lu, (186)Re and (188)Re, the procedure consists in measuring hand contamination immediately after use. In Switzerland, screening procedures have been adopted by most nuclear medicine services since such measurements enable an acceptable monitoring while taking into account practical and economic considerations.
Resumo:
Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.
Resumo:
A test kit based on living, lyophilized bacterial bioreporters emitting bioluminescence as a response to arsenite and arsenate was applied during a field campaign in six villages across Bangladesh. Bioreporter field measurements of arsenic in groundwater from tube wells were in satisfying agreement with the results of spectroscopic analyses of the same samples conducted in the lab. The practicability of the bioreporter test in terms of logistics and material requirements, suitability for high sample throughput, and waste disposal was much better than that of two commercial chemical test kits that were included as references. The campaigns furthermore demonstrated large local heterogeneity of arsenic in groundwater, underscoring the use of well switching as an effective remedy to avoid high arsenic exposure.
Resumo:
It is increasingly evident that cancer results from altered organ homeostasis rather than from deregulated control of single cells or groups of cells. This applies especially to epithelial cancer, the most common form of human solid tumors and a major cause of cancer lethality. In the vast majority of cases, in situ epithelial cancer lesions do not progress into malignancy, even if they harbor many of the genetic changes found in invasive and metastatic tumors. While changes in tumor stroma are frequently viewed as secondary to changes in the epithelium, recent evidence indicates that they can play a primary role in both cancer progression and initiation. These processes may explain the phenomenon of field cancerization, i.e., the occurrence of multifocal and recurrent epithelial tumors that are preceded by and associated with widespread changes of surrounding tissue or organ "fields."
Resumo:
In this paper, we propose a new paradigm to carry outthe registration task with a dense deformation fieldderived from the optical flow model and the activecontour method. The proposed framework merges differenttasks such as segmentation, regularization, incorporationof prior knowledge and registration into a singleframework. The active contour model is at the core of ourframework even if it is used in a different way than thestandard approaches. Indeed, active contours are awell-known technique for image segmentation. Thistechnique consists in finding the curve which minimizesan energy functional designed to be minimal when thecurve has reached the object contours. That way, we getaccurate and smooth segmentation results. So far, theactive contour model has been used to segment objectslying in images from boundary-based, region-based orshape-based information. Our registration technique willprofit of all these families of active contours todetermine a dense deformation field defined on the wholeimage. A well-suited application of our model is theatlas registration in medical imaging which consists inautomatically delineating anatomical structures. Wepresent results on 2D synthetic images to show theperformances of our non rigid deformation field based ona natural registration term. We also present registrationresults on real 3D medical data with a large spaceoccupying tumor substantially deforming surroundingstructures, which constitutes a high challenging problem.
Resumo:
PURPOSE: To compare the apparent diffusion coefficient (ADC) values of malignant liver lesions on diffusion-weighted MRI (DWI) before and after successful radiofrequency ablation (RF ablation). MATERIALS AND METHODS: Thirty-two patients with 43 malignant liver lesions (23/20: metastases/hepatocellular carcinomas (HCC)) underwent liver MRI (3.0T) before (<1month) and after RF ablation (at 1, 3 and 6months) using T2-, gadolinium-enhanced T1- and DWI-weighted MR sequences. Jointly, two radiologists prospectively measured ADCs for each lesion by means of two different regions of interest (ROIs), first including the whole lesion and secondly the area with the visibly most restricted diffusion (MRDA) on ADC map. Changes of ADCs were evaluated with ANOVA and Dunnett tests. RESULTS: Thirty-one patients were successfully treated, while one patient was excluded due to focal recurrence. In metastases (n=22), the ADC in the whole lesion and in MRDA showed an up-and-down evolution. In HCC (n=20), the evolution of ADC was more complex, but with significantly higher values (p=0.013) at 1 and 6months after RF ablation. CONCLUSION: The ADC values of malignant liver lesions successfully treated by RF ablation show a predictable evolution and may help radiologists to monitor tumor response after treatment.
Resumo:
OBJECTIVE: Esophageal temperature is the gold standard for in-the-field temperature monitoring in hypothermic victims with cardiac arrest. For practical reasons, some mountain rescue teams use homemade esophageal thermometers to measure esophageal temperature; these consist of nonmedical inside/outside temperature monitoring instruments that have been modified to allow for esophageal insertion. We planned a study to determine the accuracy of such thermometers. METHODS: Two of the same model of digital cabled indoor/outdoor thermometer were modified and tested in comparison with a reference thermometer. The thermometers were tested in a water bath at different temperatures between 10°C and 35.2°C. Three hundred measurements were taken with each thermometer. RESULTS: Our experimental study showed that both homemade thermometers provided a good correlation and a clinically acceptable agreement in comparison with the reference thermometer. Measurements were within 0.5°C in comparison with the reference thermometer 97.5% of the time. CONCLUSIONS: The homemade thermometers performed well in vitro, in comparison with a reference thermometer. However, because these devices in their original form are not designed for clinical use, their use should be restricted to situations when the use of a conventional esophageal thermometer is impossible.
Resumo:
Anti-neuronal antibodies are implicated in various neurological syndromes that are sometimes associated with tumors. Depending on the antigenic target (nuclear, cytoplasmic or extracellular cell-surface or synaptic) the clinical presentation is different. In neurological syndromes associated with antibodies specific for intracellular antigens, the T-cell mediated immunological response predominates as pathogenic effector and the response to treatment is typically poor. In contrast, in syndromes related to antibodies against extracellular targets, the role of the antibodies is pathogenic and the neurological syndrome often responds better to immunomodulatory treatment, associated or not with an anti-tumoral treatment. We review the spectrum of anti-neuronal antibodies and their corresponding clinical and therapeutic characteristics.
Resumo:
The prediction of binding modes (BMs) occurring between a small molecule and a target protein of biological interest has become of great importance for drug development. The overwhelming diversity of needs leaves room for docking approaches addressing specific problems. Nowadays, the universe of docking software ranges from fast and user friendly programs to algorithmically flexible and accurate approaches. EADock2 is an example of the latter. Its multiobjective scoring function was designed around the CHARMM22 force field and the FACTS solvation model. However, the major drawback of such a software design lies in its computational cost. EADock dihedral space sampling (DSS) is built on the most efficient features of EADock2, namely its hybrid sampling engine and multiobjective scoring function. Its performance is equivalent to that of EADock2 for drug-like ligands, while the CPU time required has been reduced by several orders of magnitude. This huge improvement was achieved through a combination of several innovative features including an automatic bias of the sampling toward putative binding sites, and a very efficient tree-based DSS algorithm. When the top-scoring prediction is considered, 57% of BMs of a test set of 251 complexes were reproduced within 2 Å RMSD to the crystal structure. Up to 70% were reproduced when considering the five top scoring predictions. The success rate is lower in cross-docking assays but remains comparable with that of the latest version of AutoDock that accounts for the protein flexibility. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011.
Resumo:
To evaluate the severity of airway pathologies, quantitative dimensioning of airways is of utmost importance. Endoscopic vision gives a projective image and thus no true scaling information can be directly deduced from it. In this article, an approach based on an interferometric setup, a low-coherence laser source and a standard rigid endoscope is presented, and applied to hollow samples measurements. More generally, the use of the low-coherence interferometric setup detailed here could be extended to any other endoscopy-related field of interest, e.g., gastroscopy, arthroscopy and other medical or industrial applications where tri-dimensional topology is required. The setup design with a multiple fibers illumination system is presented. Demonstration of the method ability to operate on biological samples is assessed through measurements on ex vivo pig bronchi.
Resumo:
Coronary magnetic resonance angiography (MRA) is a powerful noninvasive technique with high soft-tissue contrast for the visualization of the coronary anatomy without X-ray exposure. Due to the small dimensions and tortuous nature of the coronary arteries, a high spatial resolution and sufficient volumetric coverage have to be obtained. However, this necessitates scanning times that are typically much longer than one cardiac cycle. By collecting image data during multiple RR intervals, one can successfully acquire coronary MR angiograms. However, constant cardiac contraction and relaxation, as well as respiratory motion, adversely affect image quality. Therefore, sophisticated motion-compensation strategies are needed. Furthermore, a high contrast between the coronary arteries and the surrounding tissue is mandatory. In the present article, challenges and solutions of coronary imaging are discussed, and results obtained in both healthy and diseased states are reviewed. This includes preliminary data obtained with state-of-the-art techniques such as steady-state free precession (SSFP), whole-heart imaging, intravascular contrast agents, coronary vessel wall imaging, and high-field imaging. Simultaneously, the utility of electron beam computed tomography (EBCT) and multidetector computed tomography (MDCT) for the visualization of the coronary arteries is discussed.