49 resultados para Familial characterization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine repeat antigen 5 (SERA5) is an abundant antigen of the human malaria parasite Plasmodium falciparum and is the most strongly expressed member of the nine-gene SERA family. It appears to be essential for the maintenance of the erythrocytic cycle, unlike a number of other members of this family, and has been implicated in parasite egress and/or erythrocyte invasion. All SERA proteins possess a central domain that has homology to papain except in the case of SERA5 (and some other SERAs), where the active site cysteine has been replaced with a serine. To investigate if this domain retains catalytic activity, we expressed, purified, and refolded a recombinant form of the SERA5 enzyme domain. This protein possessed chymotrypsin-like proteolytic activity as it processed substrates downstream of aromatic residues, and its activity was reversed by the serine protease inhibitor 3,4-diisocoumarin. Although all Plasmodium SERA enzyme domain sequences share considerable homology, phylogenetic studies revealed two distinct clusters across the genus, separated according to whether they possess an active site serine or cysteine. All Plasmodia appear to have at least one member of each group. Consistent with separate biological roles for members of these two clusters, molecular modeling studies revealed that SERA5 and SERA6 enzyme domains have dramatically different surface properties, although both have a characteristic papain-like fold, catalytic cleft, and an appropriately positioned catalytic triad. This study provides impetus for the examination of SERA5 as a target for antimalarial drug design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

his paper proposes a structural investigation of the Turtle Mountain anticline (Alberta, Canada) to better understand the role of the different tectonic features on the development of both local and large scale rock slope instabilities occurring in Turtle Mountain. The study area is investigated by combining remote methods with detailed field surveys. In particular, the benefit of Terrestrial Laser Scanning for ductile and brittle tectonic structure interpretations is illustrated. The proposed tectonic interpretation allows the characterization of the fracturing pattern, the fold geometry and the role of these tectonic features in rock slope instability development. Ten discontinuity sets are identified in the study area, their local variations permitting the differentiation of the study zone into 20 homogenous structural domains. The anticline is described as an eastern verging fold that displays considerable geometry differences along its axis and developed by both flexural slip and tangential longitudinal strain folding mechanisms. Moreover, the origins of the discontinuity sets are determined according to the tectonic phases affecting the region (pre-folding, folding, post-folding). The localization and interpretation of kinematics of the different instabilities revealed the importance of considering the discrete brittle planes of weakness, which largely control the kinematic release of the local instabilities, and also the rock mass damage induced by large tectonic structures (fold hinge, thrust).