80 resultados para Failure and quality loss
Resumo:
[Summary] 2. Roles of quality control in the pharmaceutical and biopharmaceutical industries. - 2.1. Pharmaceutical industry. - 2.2. Biopharmaceutical industry. - 2.3. Policy and regulatory. - 2.3.1. The US Food and Drug Administration (FDA). - 2.3.2. The European Medicine Agency (EMEA). - 2.3.3. The Japanese Ministry of Work, Labor and Welfare (MHLW). - 2.3.4. The Swiss Agency for Therapeutic Products (Swissmedic). - 2.3.5. The International Conference on Harmonization (ICH). - - 3. Types of testing. - 3.1. Microbiological purity tests. - 3.2. Physiochemical tests. - 3.3. Critical to quality steps. - 3.3.1. API starting materials and excipients. - 3.3.2. Intermediates. - 3.3.3. APIs (drug substances) and final drug product. - 3.3.4. Primary and secondary packaging materials fro drug products. - - 4. Manufacturing cost and quality control. - 4.1.1. Pharmaceutical manufacturing cost breakdown. - 4.1.2. Biopharmaceutical manufacturing cost breakdown. - 4.2. Batch failure / rejection / rework / recalls. - - 5. Future trends in the quality control of pharmaceuticals and biopharmaceuticals. - 5.1. Rapid and real time testing. - 5.1.1. Physio-chemicals testing. - 5.1.2. Rapid microbiology methods
Resumo:
Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.
Resumo:
OBJECTIVES: It is still debated if pre-existing minority drug-resistant HIV-1 variants (MVs) affect the virological outcomes of first-line NNRTI-containing ART. METHODS: This Europe-wide case-control study included ART-naive subjects infected with drug-susceptible HIV-1 as revealed by population sequencing, who achieved virological suppression on first-line ART including one NNRTI. Cases experienced virological failure and controls were subjects from the same cohort whose viraemia remained suppressed at a matched time since initiation of ART. Blinded, centralized 454 pyrosequencing with parallel bioinformatic analysis in two laboratories was used to identify MVs in the 1%-25% frequency range. ORs of virological failure according to MV detection were estimated by logistic regression. RESULTS: Two hundred and sixty samples (76 cases and 184 controls), mostly subtype B (73.5%), were used for the analysis. Identical MVs were detected in the two laboratories. 31.6% of cases and 16.8% of controls harboured pre-existing MVs. Detection of at least one MV versus no MVs was associated with an increased risk of virological failure (OR = 2.75, 95% CI = 1.35-5.60, P = 0.005); similar associations were observed for at least one MV versus no NRTI MVs (OR = 2.27, 95% CI = 0.76-6.77, P = 0.140) and at least one MV versus no NNRTI MVs (OR = 2.41, 95% CI = 1.12-5.18, P = 0.024). A dose-effect relationship between virological failure and mutational load was found. CONCLUSIONS: Pre-existing MVs more than double the risk of virological failure to first-line NNRTI-based ART.
Resumo:
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.
Resumo:
Background: The RCP is a 14 French collapsable percutaneous cardiovascular support device positioned in the descending part of the thoracic aorta via the femoral artery. A 10 patient first in man study demonstrated device safety and significant improvement in renal function among high risk PCI patients. We now report haemodynamic and renal efficacy in patients with ADHF.Methods: Prospective non randomised study seeking to recruit 20 patients with ADHF with a need for inotropic or mechanical circulatory support with: i) EF < 30% ii)Cardiac index(CI) < 2.2 L / min / m2 Outcome measures included: 1) Cardiac index (CI) 2) Pulmonary Capillary Wedge Pressure (PCWP) 3) Urine output / serum creatinine 4) Vascular / device complications 5) 30 day mortalityResults: INTERIM ANALYSIS (n=12) The mean age of the study group was 64 years, with a mean baseline creatinine of 193 umol/L, eGFR 38 ml/min. The intended RCP treatment period was 24 hours. During RCP treatment there was a significant mean reduction of PCWP at 4 hours of 17% (25 to 21 mmHg p=0.04). Mean CI increased at 12 hours by 11%, though not reaching significance (1.78 to 1.96 L/min/m2 p=0.08). RCP insertion prompted substantial diuresis. Urine output tripled over the first 12 hours compared to baseline (55 ml/hr vs 213 ml/hr p=0.03). This was associated with significantly improved renal function, a 28% reduction in serum creatinine at 12 hours (193 to 151 umol/L p=0.003), and a increase in eGFR from 38 ml/min to 50 ml/min (p=0.0007). 2 patients previously refused cardiac transplantation were reassessed and successfully transplanted within 9 months of RCP treatment on the basis of demonstrable renal reversibility. There were no vascular or device complications. There were 2 deaths at 30 days, one from multi-organ failure and sepsis, and one from intractable heart failure - neither were device related.Conclusion: RCP support in ADHF patients was associated with improved haemodynamics, and an improvement in renal function. The Reitan Catheter Pump may have a role in providing percutaneous cardiovascular and renal support in the acutely decompensated cardiac patient, and may have a role in suggesting renal reversibility in potential cardiac transplant patients. Further data will be reported at recruitment completion.
Resumo:
For accurate and quantitative immunohistochemical localization of antigens it is crucial to know the solubility of tissue proteins and their degree of loss during processing. In this study we focused on the solubility of several cytoskeletal proteins in cat brain tissue at various ages and their loss during immunohistochemical procedures. We further examined whether fixation affected either solubility or immunocytochemical detectability of several cytoskeletal proteins. An assay was designed to measure the solubility of cytoskeletal proteins in cryostat sections. Quantity and quality of proteins lost or remaining in tissue were measured and analyzed by electrophoresis and immunoblots. Most microtubule proteins were found to be soluble in unfixed and alcohol fixed tissues. Furthermore, the microtubule proteins remaining in the tissue had a changed cellular distribution. In contrast, brain spectrin and all three neurofilament subunits were insoluble and remained in the tissue, allowing their immunocytochemical localization in alcohol-fixed tissue. Synapsin I, a protein associated with the spectrin cytoskeleton, was soluble, and aldehyde fixation is advised for its immunohistochemical localization. With aldehyde fixation, the immunoreactivity of some antibodies against neurofilament proteins was reduced in axons unveiling novel immunogenic sites in nuclei that may represent artifacts of fixation. In conclusion, protein solubility and the effects of fixation are influential factors in cytoskeletal immunohistochemistry, and should be considered before assessments for a quantitative distribution are made.
Resumo:
A 5-year-old previously healthy boy was admitted for abdominal pain and vomiting. Physical examination showed tachypnoe (32/min), hepatomegaly and painful palpation of the upper right abdominal quadrant. Laboratory tests were normal except for elevated ammonium (202mcmol/l). Chest X-ray was performed, showing cardiomegaly and interstitial edema. Transthoracic echocardiography revealed dilated left cavities and LV hypertrophy together with a diffuse hypokinesia and LVEF of 30-40%. Diuretics and ACE-inhibitors were introduced. At that time, the differential diagnosis for the DCM included myocarditis, congenital or genetic, metabolic or autoimmune disease. The next day, the boy underwent cardiac magnetic resonance (CMR) examination, showing a severe dilatation of the LV with an end-diastolic diameter of 50mm and a volume of 150ml. LVEF was 20% with diffuse LV hypokinesia (Fig. 1). No late enhancement was present after Gadolinium injection, ruling out myocarditis. Further laboratory metabolic analysis indicated severely decreased total and free carnitin levels and low renal carnitin reabsorption, corroborating the diagnosis of primary carnitin deficiency (PCD). Carnitin substitution was initiated. The clinical condition rapidly improved. No symptoms of heart failure were present anymore. A follow-up CMR performed 9 months later confirmed the recovery. LV end-diastolic volume decreased from 150ml to 66ml, LVEF increased from 20% to 55% (Fig. 2). Late enhancement was absent after Gadolinum injection (Fig. 3).Carnitin is required for the transport of fatty acids from the cytosol into mitochondria during lipid breakdown. 75% of carnitin is obtained from food, 25% is endogenously synthesized. PCD is an autosomal recessive disorder resulting from impairment of a transporter activity, caused by mutation of the SLC22A5 gene. Incidence is about 1 in 40'000 newborns. Diagnosis is usually made at age 1 to 7. Three forms of PCD are described. In the form associated with cardiomyopathy, the disease is progressive and patient die from heart failure if not treated. Substitution of L-Carnitin leads to a dramatic improvement of disease course.This case underlines the crucial role of etiologic diagnostics in this reversible form of DCM. Early diagnostics and therapy are critical for the prognosis of the patient. This is furthermore an example of a role played by CMR in the diagnostic work-up of heart failure and its follow-up under therapy.
Resumo:
BACKGROUND: Roux-en-Y gastric bypass (RYGBP)-essentially a restrictive bariatric procedure-is currently considered the gold standard for the surgical treatment of morbid obesity. Open surgery in obese patients is associated with a high risk of cardiopulmonary complications, wound infection, and late incisional hernia. Laparoscopic surgery has been shown to reduce perioperative morbidity and to improve postoperative recovery for various procedures. Herein we present our results with laparoscopic RYGBP after an initial 2-year experience. METHODS: A prospective database was created in our department beginning without the first laparoscopic bariatric procedure. To provide a complete follow-up of 6 months, the results of all patients operated on between June 1999 and August 2001 were reviewed. Early surgical results, weight loss, correction of comorbidities, and improvement of quality of life were evaluated. RESULTS: A total of 107 patients were included. There were 82 women and 25 men, with a mean age of 39.7 years (range, 19-58). RYGBP was a primary procedure in 80 cases (49 morbidly obese and 31 superobese patients) and a reoperation after failure or complication of another bariatric operation in 27 cases. Mean duration of surgery was 168 min for morbidly obese patients, 196 min for surperobese patients, and 205 min for reoperated patients (p <0.01). Conversion to open surgery was necessary in two cases. A total of 22 patients (20.5%) developed complication. Nine of them (8.4%) required reoperation for leak (five cases, or 4.6%), bowel occlusion (three cases, or 2.8%), or subphrenic abscess (one case, or 0.9%). mortality was 0.9%. Major morbidity decreased over time (first two-thirds, 12.5%, last third, 2.7%). major morbidity decreased over time (first two-thirds, 12.5%; last third, 2.7%). Excess weight loss of -50% was achieved in >80% of the patients, corresponding to a loss of 15 body mass index (BMI) units in morbidly obese patients and 20 BMI units in superobese patients. In the vast majority of patients, comorbidities improved or disappeared over time and quality of life improved. CONCLUSIONS: Laparoscopic Roux-en-Y gastric bypass is feasible, but it is a very complex operation. Indeed, it is associated with a long and steep learning curve, as reflected in the high number of major complications among our first 70 patients. The learning curve probably includes between 100 and 150 patients. With increasing experience, the morbidity rate becomes more acceptable and comparable to that of open RYGBP. The results in terms of weight loss and correction of comorbidities are similar to those obtained after open surgery, at least in the short term. However, only surgeons with extensive experience in advanced laparoscopic as well as bariatric surgery should attempt this procedure.
Resumo:
Bone loss secondary to inflammatory bowel diseases (IBD) is largely explained by activated T cells producing cytokines that trigger osteoclastogenesis and accelerate bone resorptionwhile inhibiting bone formation. In IBD, elevated expression of interleukin (IL)-15, a T cell growth factor, plays a central role in T cell activation, pro-inflammatory cytokine production and the development of colitis. We previously reported that IL-15 enhances RANKL-induced osteoclastogenesis and that an IL-15 antagonist, CRB-15, prevents weight and bone loss in a mousemodel of dextran sulfate sodium-induced colitis.We hypothesized that inhibition of IL-15 signalingmight prevent bone loss in IL-10 deficient (IL10−/−) mice, that develop spontaneous bowel inflammation associatedwith osteopeniawhen they are no longer raised under germ-free conditions.Mice received anIL-15 antagonist (CRB-15, 5 μg/day, n=5) or IgG2a (5 μg/day, n=4) fromweek 10 to 14 of age. The severity of colitis was assessed by histology and bowel cytokine gene expression by real time PCR. Bone mass and architecturewere evaluated by ex vivo DXA on femur and micro-computed tomography on femur and vertebra. Bodyweight gainwas similar in the two groups. After 4 weeks, colonwas 29% shorter in CRB-15 treatedmice (p<0.006), a sign of reduced inflammation. Histological analysis indicated a transmural infiltration of inflammatory cells, lymphoepithelial lesions and increased size of villi (histological score=4/6) in IgG2a treated mice, whereas colon from CRB-15 treated mice exhibited mild infiltration of inflammatory cells of the lamina propria, no mucosal damages and a minimal increased size of villi (histological score=1.6/6). Levels of TNFα, IL-17 and IL-6 mRNA in the colon were significantly reduced in CRB-15 treated mice (p<0.04 vs IgG2), indicating a decrease in colon inflammation. CRB-15 improved femur BMD (+10.6% vs IgG2a, p<0.002), vertebral trabecular bone volume fraction (BV/TV, +19.7% vs IgG2a, p<0.05) and thickness (+11.6% vs IgG2a, p<0.02). A modest but not significant increase in trabecular BV/TV was observed at the distal femur. Cortical thicknesswas also higher at themidshaft femur in CRB-15 treatedmice (+8.3% vs IgG2a, p<0.02). In conclusion, we confirm and extend our results about the effects of CRB-15 in colitis. Antagonizing IL-15 may exert favorable effects on intestinal inflammation and prevent bone loss and microarchitecture alterations induced by colitis. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: B. Brounais-Le Royer Grant / Research Support from Novartis Consumer Health Foundation, S. Ferrari-Lacraz: none declared, D. Velin: none declared, X. Zheng: none declared, S. Ferrari: none declared, D. Pierroz: none declared.
Resumo:
The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.
Resumo:
BACKGROUND: Adherence to combination antiretroviral therapy (cART) is a dynamic process, however, changes in adherence behavior over time are insufficiently understood. METHODS: Data on self-reported missed doses of cART was collected every 6 months in Swiss HIV Cohort Study participants. We identified behavioral groups associated with specific cART adherence patterns using trajectory analyses. Repeated measures logistic regression identified predictors of changes in adherence between consecutive visits. RESULTS: Six thousand seven hundred nine individuals completed 49,071 adherence questionnaires [median 8 (interquartile range: 5-10)] during a median follow-up time of 4.5 years (interquartile range: 2.4-5.1). Individuals were clustered into 4 adherence groups: good (51.8%), worsening (17.4%), improving (17.6%), and poor adherence (13.2%). Independent predictors of worsening adherence were younger age, basic education, loss of a roommate, starting intravenous drug use, increasing alcohol intake, depression, longer time with HIV, onset of lipodystrophy, and changing care provider. Independent predictors of improvements in adherence were regimen simplification, changing class of cART, less time on cART, and starting comedications. CONCLUSIONS: Treatment, behavioral changes, and life events influence patterns of drug intake in HIV patients. Clinical care providers should routinely monitor factors related to worsening adherence and intervene early to reduce the risk of treatment failure and drug resistance.
Resumo:
Introduction: Posttraumatic painful osteoarthritis of the ankle joint after fracture-dislocation often has to be treated with arthrodesis. In the presence of major soft tissue lesions and important bone loss the technique to achieve arthrodesis has to be well chosen in order to prevent hardware failure, infection of bulky implants or non-union. Methods: We present the case of a 53 year-old biker suffering of a fracture-dislocation of the ankle associated with a mayor degloving injury of the heel. After initial immobilization of the lesion by external fixation in Spain the patient was transferred to our hospital for further treatment. The degloving injury of the heel with MRSA infection was initially treated by repeated débridement, changing of the configuration of the Ex Fix and antibiotic therapy with favourable outcome. Because of the bony lesions reconstruction of the ankle-joint was juged not to be an option and arthrodesis was planned. Due to bad soft-tissue situation standard open fixtion with plate and/or screws was not wanted but an option for intramedullary nailing was taken. However the use of a standard retrograde arthrodesis nail comes with two problems: 1) Risk of infection of the heel-part of the calaneus/nail in an unstable soft tissue situation with protruding nail. And 2) talo-calcaneal arthrodesis of an initially healthy subtalar joint. Given the situation of an unstable plantar/heel flap it was decided to perform anklearthrodesis by means of an anterograde nail with static fixation in the talus and in the proximal tibia. Results:This operation was performed with minimal opening at the ankle-site in order to remove the remaining cartilage and improve direct bone to bone contact. Arthrodesis was achieved by means of an anterograde T2 Stryker tibial nail.One year after the anterograde nailing the patient walks without pain for up to 4 hours with a heel of good quality and arthrodesis is achieved. Conclusion: Tibiotalar arthrodesis in the presence of mayor soft tissue lesions and bone loss can be successfully achieved with antegrade nailing.
Resumo:
PRINCIPLES: International guidelines for heart failure (HF) care recommend the implementation of inter-professional disease management programmes. To date, no such programme has been tested in Switzerland. The aim of this randomised controlled trial (RCT) was to test the effect on hospitalisation, mortality and quality of life of an adult ambulatory disease management programme for patients with HF in Switzerland.METHODS: Consecutive patients admitted to internal medicine in a Swiss university hospital were screened for decompensated HF. A total of 42 eligible patients were randomised to an intervention (n = 22) or usual care group (n = 20). Medical treatment was optimised and lifestyle recommendations were given to all patients. Intervention patients additionally received a home visit by a HF-nurse, followed by 17 telephone calls of decreasing frequency over 12 months, focusing on self-care. Calls from the HF nurse to primary care physicians communicated health concerns and identified goals of care. Data were collected at baseline, 3, 6, 9 and 12 months. Mixed regression analysis (quality of life) was used. Outcome assessment was conducted by researchers blinded to group assignment.RESULTS: After 12 months, 22 (52%) patients had an all-cause re-admission or died. Only 3 patients were hospitalised with HF decompensation. No significant effect of the intervention was found on HF related to quality of life.CONCLUSIONS: An inter-professional disease management programme is possible in the Swiss healthcare setting but effects on outcomes need to be confirmed in larger studies.
Resumo:
SUMMARY : The function of sleep for the organism is one of the most persistent and perplexing questions in biology. Current findings lead to the conclusion that sleep is primarily for the brain. In particular, a role for sleep in cognitive aspects of brain function is supported by behavioral evidence both in humans and animals. However, in spite of remarkable advancement in the understanding of the mechanisms underlying sleep generation and regulation, it has been proven difficult to determine the neurobiological mechanisms underlying the beneficial effect of sleep, and the detrimental impact of sleep loss, on learning and memory processes. In my thesis, I present results that lead to several critical steps forward in the link between sleep and cognitive function. My major result is the molecular identification and physiological analysis of a protein, the NR2A subunit of NMDA receptor (NMDAR), that confers sensitivity to sleep loss to the hippocampus, a brain structure classically involved in mnemonic processes. Specifically, I used a novel behavioral approach to achieve sleep deprivation in adult C57BL6/J mice, yet minimizing the impact of secondary factors associated with the procedure,.such as stress. By using in vitro electrophysiological analysis, I show, for the first time, that sleep loss dramatically affects bidirectional plasticity at CA3 to CA1 synapses in the hippocampus, a well established cellular model of learning and memory. 4-6 hours of sleep loss elevate the modification threshold for bidirectional synaptic plasticity (MT), thereby promoting long-term depression of CA3 to CA 1 synaptic strength after stimulation in the theta frequency range (5 Hz), and rendering long-term potentiation induction.more difficult. Remarkably, 3 hours of recovery sleep, after the deprivation, reset the MT at control values, thus re-establishing the normal proneness of synapses to undergo long-term plastic changes. At the molecular level, these functional changes are paralleled by a change in the NMDAR subunit composition. In particular, the expression of the NR2A subunit protein of NMDAR at CA3 to CA1 synapses is selectively and rapidly increased by sleep deprivation, whereas recovery sleep reset NR2A synaptic content to control levels. By using an array of genetic, pharmacological and computational approaches, I demonstrate here an obligatory role for NR2A-containing NMDARs in conveying the effect of sleep loss on CA3 to CAl MT. Moreover, I show that a genetic deletion of the NR2A subunit fully preserves hippocampal plasticity from the impact of sleep loss, whereas it does not alter sleepwake behavior and homeostatic response to sleep deprivation. As to the mechanism underlying the effects of the NR2A subunit on hippocampal synaptic plasticity, I show that the increased NR2A expression after sleep loss distinctly affects the contribution of synaptic and more slowly recruited NMDAR pools activated during plasticity-induction protocols. This study represents a major step forward in understanding the mechanistic basis underlying sleep's role for the brain. By showing that sleep and sleep loss affect neuronal plasticity by regulating the expression and function of a synaptic neurotransmitter receptor, I propose that an important aspect of sleep function could consist in maintaining and regulating protein redistribution and ion channel trafficking at central synapses. These findings provide a novel starting point for investigations into the connections between sleep and learning, and they may open novel ways for pharmacological control over hippocampal .function during periods of sleep restriction. RÉSUMÉ DU PROJET La fonction du sommeil pour l'organisme est une des questions les plus persistantes et difficiles dans la biologie. Les découvertes actuelles mènent à la conclusion que le sommeil est essentiel pour le cerveau. En particulier, le rôle du sommeil dans les aspects cognitifs est soutenu par des études comportementales tant chez les humains que chez les animaux. Cependant, malgré l'avancement remarquable dans la compréhension des mécanismes sous-tendant la génération et la régulation du sommeil, les mécanismes neurobiologiques qui pourraient expliquer l'effet favorable du sommeil sur l'apprentissage et la mémoire ne sont pas encore clairs. Dans ma thèse, je présente des résultats qui aident à clarifier le lien entre le sommeil et la fonction cognitive. Mon résultat le plus significatif est l'identification moléculaire et l'analyse physiologique d'une protéine, la sous-unité NR2A du récepteur NMDA, qui rend l'hippocampe sensible à la perte de sommeil. Dans cette étude, nous avons utilisé une nouvelle approche expérimentale qui nous a permis d'induire une privation de sommeil chez les souris C57BL6/J adultes, en minimisant l'impact de facteurs confondants comme, par exemple, le stress. En utilisant les techniques de l'électrophysiologie in vitro, j'ai démontré, pour la première fois, que la perte de sommeil est responsable d'affecter radicalement la plasticité bidirectionnelle au niveau des synapses CA3-CA1 de l'hippocampe. Cela correspond à un mécanisme cellulaire de l'apprentissage et de la mémoire bien établi. En particulier, 4-6 heures de privation de sommeil élèvent le seuil de modification pour la plasticité synaptique bidirectionnelle (SM). Comme conséquence, la dépression à long terme de la transmission synaptique est induite par la stimulation des fibres afférentes dans la bande de fréquences thêta (5 Hz), alors que la potentialisation à long terme devient plus difficile. D'autre part, 3 heures de sommeil de récupération sont suffisant pour rétablir le SM aux valeurs contrôles. Au niveau moléculaire, les changements de la plasticité synaptiques sont associés à une altération de la composition du récepteur NMDA. En particulier, l'expression synaptique de la protéine NR2A du récepteur NMDA est rapidement augmentée de manière sélective par la privation de sommeil, alors que le sommeil de récupération rétablit l'expression de la protéine au niveau contrôle. En utilisant des approches génétiques, pharmacologiques et computationnelles, j'ai démontré que les récepteurs NMDA qui expriment la sous-unité NR2A sont responsables de l'effet de la privation de sommeil sur le SM. De plus, nous avons prouvé qu'une délétion génétique de la sous-unité NR2A préserve complètement la plasticité synaptique hippocampale de l'impact de la perte de sommeil, alors que cette manipulation ne change pas les mécanismes de régulation homéostatique du sommeil. En ce qui concerne les mécanismes, j'ai .découvert que l'augmentation de l'expression de la sous-unité NR2A au niveau synaptique modifie les propriétés de la réponse du récepteur NMDA aux protocoles de stimulations utilisés pour induire la plasticité. Cette étude représente un pas en avant important dans la compréhension de la base mécaniste sous-tendant le rôle du sommeil pour le cerveau. En montrant que le sommeil et la perte de sommeil affectent la plasticité neuronale en régulant l'expression et la fonction d'un récepteur de la neurotransmission, je propose qu'un aspect important de la fonction du sommeil puisse être finalisé au règlement de la redistribution des protéines et du tracking des récepteurs aux synapses centraux. Ces découvertes fournissent un point de départ pour mieux comprendre les liens entre le sommeil et l'apprentissage, et d'ailleurs, ils peuvent ouvrir des voies pour des traitements pharmacologiques dans le .but de préserver la fonction hippocampale pendant les périodes de restriction de sommeil.
Resumo:
The pathophysiological role of an increase in circulating vasopressin in sustaining global and regional vasoconstriction in patients with congestive heart failure has not been established, particularly in patients with hyponatraemia. To assess this further, 20 patients with congestive heart failure refractory to digoxin and diuretics were studied before and 60 minutes after the intravenous injection (5 micrograms/kg) of the vascular antagonist of vasopressin [1(beta-mercapto-beta,beta-cyclopentamethylene-propionic acid), 2-(0-methyl) tyrosine] arginine vasopressin. Ten patients were hyponatraemic (plasma sodium less than 135 mmol/l) and 10 were normonatraemic. In both groups of patients the vascular vasopressin antagonist did not alter systemic or pulmonary artery pressures, right atrial pressure, pulmonary capillary wedge pressure, cardiac index, or vascular resistances. Furthermore, there was no change in skin and hepatic blood flow in either group after the injection of the vascular antagonist. Only one patient in the hyponatraemic group showed considerable haemodynamic improvement. He had severe congestive heart failure and a high concentration of plasma vasopressin (51 pmol/l). Plasma renin activity, vasopressin, or catecholamine concentrations were not significantly changed in response to the administration of the vasopressin antagonist in either the hyponatraemic or the normonatraemic groups. Patients with hyponatraemia, however, had higher baseline plasma catecholamine concentrations, heart rate, pulmonary pressure and resistance, and lower hepatic blood flow than patients without hyponatraemia. Plasma vasopressin and plasma renin activity were slightly, though not significantly, higher in the hyponatraemic group. Thus the role of vasopressin in sustaining regional or global vasoconstriction seems limited in patients with congestive heart failure whether or not concomitant hyponatraemia is present. Vasopressin significantly increases the vascular tone only in rare patients with severe congestive heart failure and considerably increased vasopressin concentrations. Patients with hyponatraemia do, however, have raised baseline catecholamine concentrations, heart rate, pulmonary arterial pressure and resistance, and decreased hepatic blood flow.