155 resultados para Extreme Quantile


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Reconstruction of the central aortic pressure wave from the noninvasive recording of the radial pulse with applanation tonometry has become a standard tool in the field of hypertension. It is not presently known whether recording the radial pulse on the dominant or the nondominant side has any effect on such reconstruction. METHOD: We carried out radial applanation tonometry on both forearms in young, healthy, male volunteers, who were either sedentary (n = 11) or high-level tennis players (n = 10). The purpose of including tennis players was to investigate individuals with extreme asymmetry between the dominant and nondominant upper limb. RESULTS: In the sedentary individuals, forearm circumference and handgrip strength were slightly larger on the dominant (mean +/- SD respectively 27.9 +/- 1.5 cm and 53.8 +/- 10 kg) than on nondominant side (27.3 +/- 1.6 cm, P < 0.001 vs. dominant, and 52.1 +/- 11 kg, P = NS). In the tennis players, differences between sides were more conspicuous (forearm circumference: dominant 28.0 +/- 1.7 cm nondominant 26.4 +/- 1.5 cm, P < 0.001; handgrip strength 61.4 +/- 10.8 vs. 53.4 +/- 9.7 kg, P < 0.001). We found that in both sedentary individuals and tennis players, the radial pulse had identical shape on both sides and, consequently, the reconstructed central aortic pressure waveforms, as well as derived indices of central pulsatility, were not dependent on the side where applanation tonometry was carried out. CONCLUSION: Evidence from individuals with maximal asymmetry of dominant vs. nondominant upper limb indicates that laterality of measurement is not a methodological issue for central pulse wave analysis carried out with radial applanation tonometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21(st) century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran's I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromosomal and plasmid DNA molecules in bacterial cells are maintained under torsional tension and are therefore supercoiled. With the exception of extreme thermophiles, supercoiling has a negative sign, which means that the torsional tension diminishes the DNA helicity and facilitates strand separation. In consequence, negative supercoiling aids such processes as DNA replication or transcription that require global- or local-strand separation. In extreme thermophiles, DNA is positively supercoiled which protects it from thermal denaturation. While the role of DNA supercoiling connected to the control of DNA stability, is thoroughly researched and subject of many reviews, a less known role of DNA supercoiling emerges and consists of aiding DNA topoisomerases in DNA decatenation and unknotting. Although DNA catenanes are natural intermediates in the process of DNA replication of circular DNA molecules, it is necessary that they become very efficiently decatenated, as otherwise the segregation of freshly replicated DNA molecules would be blocked. DNA knots arise as by-products of topoisomerase-mediated intramolecular passages that are needed to facilitate general DNA metabolism, including DNA replication, transcription or recombination. The formed knots are, however, very harmful for cells if not removed efficiently. Here, we overview the role of DNA supercoiling in DNA unknotting and decatenation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to perform a thorough comparison of quantitative susceptibility mapping (QSM) techniques and their dependence on the assumptions made. The compared methodologies were: two iterative single orientation methodologies minimizing the l2, l1TV norm of the prior knowledge of the edges of the object, one over-determined multiple orientation method (COSMOS) and anewly proposed modulated closed-form solution (MCF). The performance of these methods was compared using a numerical phantom and in-vivo high resolution (0.65mm isotropic) brain data acquired at 7T using a new coil combination method. For all QSM methods, the relevant regularization and prior-knowledge parameters were systematically changed in order to evaluate the optimal reconstruction in the presence and absence of a ground truth. Additionally, the QSM contrast was compared to conventional gradient recalled echo (GRE) magnitude and R2* maps obtained from the same dataset. The QSM reconstruction results of the single orientation methods show comparable performance. The MCF method has the highest correlation (corrMCF=0.95, r(2)MCF =0.97) with the state of the art method (COSMOS) with additional advantage of extreme fast computation time. The l-curve method gave the visually most satisfactory balance between reduction of streaking artifacts and over-regularization with the latter being overemphasized when the using the COSMOS susceptibility maps as ground-truth. R2* and susceptibility maps, when calculated from the same datasets, although based on distinct features of the data, have a comparable ability to distinguish deep gray matter structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY : Eukaryotic DNA interacts with the nuclear proteins using non-covalent ionic interactions. Proteins can recognize specific nucleotide sequences based on the sterical interactions with the DNA and these specific protein-DNA interactions are the basis for many nuclear processes, e.g. gene transcription, chromosomal replication, and recombination. New technology termed ChIP-Seq has been recently developed for the analysis of protein-DNA interactions on a whole genome scale and it is based on immunoprecipitation of chromatin and high-throughput DNA sequencing procedure. ChIP-Seq is a novel technique with a great potential to replace older techniques for mapping of protein-DNA interactions. In this thesis, we bring some new insights into the ChIP-Seq data analysis. First, we point out to some common and so far unknown artifacts of the method. Sequence tag distribution in the genome does not follow uniform distribution and we have found extreme hot-spots of tag accumulation over specific loci in the human and mouse genomes. These artifactual sequence tags accumulations will create false peaks in every ChIP-Seq dataset and we propose different filtering methods to reduce the number of false positives. Next, we propose random sampling as a powerful analytical tool in the ChIP-Seq data analysis that could be used to infer biological knowledge from the massive ChIP-Seq datasets. We created unbiased random sampling algorithm and we used this methodology to reveal some of the important biological properties of Nuclear Factor I DNA binding proteins. Finally, by analyzing the ChIP-Seq data in detail, we revealed that Nuclear Factor I transcription factors mainly act as activators of transcription, and that they are associated with specific chromatin modifications that are markers of open chromatin. We speculate that NFI factors only interact with the DNA wrapped around the nucleosome. We also found multiple loci that indicate possible chromatin barrier activity of NFI proteins, which could suggest the use of NFI binding sequences as chromatin insulators in biotechnology applications. RESUME : L'ADN des eucaryotes interagit avec les protéines nucléaires par des interactions noncovalentes ioniques. Les protéines peuvent reconnaître les séquences nucléotidiques spécifiques basées sur l'interaction stérique avec l'ADN, et des interactions spécifiques contrôlent de nombreux processus nucléaire, p.ex. transcription du gène, la réplication chromosomique, et la recombinaison. Une nouvelle technologie appelée ChIP-Seq a été récemment développée pour l'analyse des interactions protéine-ADN à l'échelle du génome entier et cette approche est basée sur l'immuno-précipitation de la chromatine et sur la procédure de séquençage de l'ADN à haut débit. La nouvelle approche ChIP-Seq a donc un fort potentiel pour remplacer les anciennes techniques de cartographie des interactions protéine-ADN. Dans cette thèse, nous apportons de nouvelles perspectives dans l'analyse des données ChIP-Seq. Tout d'abord, nous avons identifié des artefacts très communs associés à cette méthode qui étaient jusqu'à présent insoupçonnés. La distribution des séquences dans le génome ne suit pas une distribution uniforme et nous avons constaté des positions extrêmes d'accumulation de séquence à des régions spécifiques, des génomes humains et de la souris. Ces accumulations des séquences artéfactuelles créera de faux pics dans toutes les données ChIP-Seq, et nous proposons différentes méthodes de filtrage pour réduire le nombre de faux positifs. Ensuite, nous proposons un nouvel échantillonnage aléatoire comme un outil puissant d'analyse des données ChIP-Seq, ce qui pourraient augmenter l'acquisition de connaissances biologiques à partir des données ChIP-Seq. Nous avons créé un algorithme d'échantillonnage aléatoire et nous avons utilisé cette méthode pour révéler certaines des propriétés biologiques importantes de protéines liant à l'ADN nommés Facteur Nucléaire I (NFI). Enfin, en analysant en détail les données de ChIP-Seq pour la famille de facteurs de transcription nommés Facteur Nucléaire I, nous avons révélé que ces protéines agissent principalement comme des activateurs de transcription, et qu'elles sont associées à des modifications de la chromatine spécifiques qui sont des marqueurs de la chromatine ouverte. Nous pensons que lés facteurs NFI interagir uniquement avec l'ADN enroulé autour du nucléosome. Nous avons également constaté plusieurs régions génomiques qui indiquent une éventuelle activité de barrière chromatinienne des protéines NFI, ce qui pourrait suggérer l'utilisation de séquences de liaison NFI comme séquences isolatrices dans des applications de la biotechnologie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells defective in any of the RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are sensitive to DNA cross-linking agents and to ionizing radiation. Because the paralogs are required for the assembly of DNA damage-induced RAD51 foci, and mutant cell lines are defective in homologous recombination and show genomic instability, their defect is thought to be caused by an inability to promote efficient recombinational repair. Here, we show that the five paralogs exist in two distinct complexes in human cells: one contains RAD51B, RAD51C, RAD51D, and XRCC2 (defined as BCDX2), whereas the other consists of RAD51C with XRCC3. Both protein complexes have been purified to homogeneity and their biochemical properties investigated. BCDX2 binds single-stranded DNA and single-stranded gaps in duplex DNA, in accord with the proposal that the paralogs play an early (pre-RAD51) role in recombinational repair. Moreover, BCDX2 complex binds specifically to nicks in duplex DNA. We suggest that the extreme sensitivity of paralog-defective cell lines to cross-linking agents is owing to defects in the processing of incised cross links and the consequential failure to initiate recombinational repair at these sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we refined the position of the disease locus (MCOP6) in an interval of 250 kb in chromosome 2q37.1 in two large Faroese families. We detected three different mutations in PRSS56. Patients of the Faroese families were either homozygous for c.926G>C (p.Trp309Ser) or compound heterozygous for c.926G>C and c.526C>G (p.Arg176Gly), whereas a homozygous 1 bp duplication (c.1066dupC) was identified in five patients with arMCOP from a consanguineous Tunisian family. In one patient with MCOP from the Faroe Islands and in another one from Turkey, no PRSS56 mutation was detected, suggesting nonallelic heterogeneity of the trait. Using RT-PCR, PRSS56 transcripts were detected in samples derived from the human adult retina, cornea, sclera, and optic nerve. The expression of the mouse ortholog could be first detected in the eye at E17 and was maintained into adulthood. The predicted PRSS56 protein is a 603 amino acid long secreted trypsin-like serine peptidase. The c.1066dupC is likely to result in a functional null allele, whereas the two point mutations predict the replacement of evolutionary conserved and functionally important residues. Molecular modeling of the p.Trp309Ser mutant suggests that both the affinity and reactivity of the enzyme toward in vivo protein substrates are likely to be substantially reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVEEvaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis.RESEARCH DESIGN AND METHODSWe generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss.RESULTSAdult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions.CONCLUSIONSAn extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We searched for disruptive, genic rare copy-number variants (CNVs) among 411 families affected by sporadic autism spectrum disorder (ASD) from the Simons Simplex Collection by using available exome sequence data and CoNIFER (Copy Number Inference from Exome Reads). Compared to high-density SNP microarrays, our approach yielded ∼2× more smaller genic rare CNVs. We found that affected probands inherited more CNVs than did their siblings (453 versus 394, p = 0.004; odds ratio [OR] = 1.19) and that the probands' CNVs affected more genes (921 versus 726, p = 0.02; OR = 1.30). These smaller CNVs (median size 18 kb) were transmitted preferentially from the mother (136 maternal versus 100 paternal, p = 0.02), although this bias occurred irrespective of affected status. The excess burden of inherited CNVs among probands was driven primarily by sibling pairs with discordant social-behavior phenotypes (p < 0.0002, measured by Social Responsiveness Scale [SRS] score), which contrasts with families where the phenotypes were more closely matched or less extreme (p > 0.5). Finally, we found enrichment of brain-expressed genes unique to probands, especially in the SRS-discordant group (p = 0.0035). In a combined model, our inherited CNVs, de novo CNVs, and de novo single-nucleotide variants all independently contributed to the risk of autism (p < 0.05). Taken together, these results suggest that small transmitted rare CNVs play a role in the etiology of simplex autism. Importantly, the small size of these variants aids in the identification of specific genes as additional risk factors associated with ASD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indirect calorimetry based on respiratory exchange measurement has been successfully used from the beginning of the century to obtain an estimate of heat production (energy expenditure) in human subjects and animals. The errors inherent to this classical technique can stem from various sources: 1) model of calculation and assumptions, 2) calorimetric factors used, 3) technical factors and 4) human factors. The physiological and biochemical factors influencing the interpretation of calorimetric data include a change in the size of the bicarbonate and urea pools and the accumulation or loss (via breath, urine or sweat) of intermediary metabolites (gluconeogenesis, ketogenesis). More recently, respiratory gas exchange data have been used to estimate substrate utilization rates in various physiological and metabolic situations (fasting, post-prandial state, etc.). It should be recalled that indirect calorimetry provides an index of overall substrate disappearance rates. This is incorrectly assumed to be equivalent to substrate "oxidation" rates. Unfortunately, there is no adequate golden standard to validate whole body substrate "oxidation" rates, and this contrasts to the "validation" of heat production by indirect calorimetry, through use of direct calorimetry under strict thermal equilibrium conditions. Tracer techniques using stable (or radioactive) isotopes, represent an independent way of assessing substrate utilization rates. When carbohydrate metabolism is measured with both techniques, indirect calorimetry generally provides consistent glucose "oxidation" rates as compared to isotopic tracers, but only when certain metabolic processes (such as gluconeogenesis and lipogenesis) are minimal or / and when the respiratory quotients are not at the extreme of the physiological range. However, it is believed that the tracer techniques underestimate true glucose "oxidation" rates due to the failure to account for glycogenolysis in the tissue storing glucose, since this escapes the systemic circulation. A major advantage of isotopic techniques is that they are able to estimate (given certain assumptions) various metabolic processes (such as gluconeogenesis) in a noninvasive way. Furthermore when, in addition to the 3 macronutrients, a fourth substrate is administered (such as ethanol), isotopic quantification of substrate "oxidation" allows one to eliminate the inherent assumptions made by indirect calorimetry. In conclusion, isotopic tracers techniques and indirect calorimetry should be considered as complementary techniques, in particular since the tracer techniques require the measurement of carbon dioxide production obtained by indirect calorimetry. However, it should be kept in mind that the assessment of substrate oxidation by indirect calorimetry may involve large errors in particular over a short period of time. By indirect calorimetry, energy expenditure (heat production) is calculated with substantially less error than substrate oxidation rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gradual increase in Earth's surface temperatures marking the transition from the late Paleocene to early Eocene (55.8±0.2Ma), represents an extraordinary warming event known as Paleocene-Eocene Thermal Maximum (PETM). Both marine and continental sedimentary records during this period reveal evidences for the massive injection of isotopically light carbon. The carbon dioxide injection from multiple potential sources may have triggered the global warming. The importance of the PETM studies is due to the fact that the PETM bears some striking resemblances to the human-caused climate change unfolding today. Most notably, the culprit behind it was a massive injection of heat-trapping greenhouse gases into the atmosphere and oceans, comparable in volume to what our persistent burning of fossil fuels could deliver in coming centuries. The exact knowledge of what went on during the PETM could help us to foresee the future climate change. The response of the oceanic and continental environments to the PETM is different. Many factors might control the response of the environments to the PETM such as paleogeography, paleotopography, paleoenvironment, and paleodepth. To better understand the mechanisms triggering PETM events, two different environments were studied: 1) shallow marine to inner shelf environment (Wadi Nukhul, Sinai; and the Dababiya GSSP, Luxor, Egypt), and 2) terrestrial environments (northwestern India lignite mines) representing wetland, and fluvial environments (Esplugafreda, Spain) both highlighting the climatic changes observed in continental conditions. In the marine realm, the PETM is characterized by negative ö13Ccar and ô13Corg excursions and shifts in Ô15N to ~0%o values above the P/E boundary and persisting along the interval suggesting a bloom and high production of atmospheric N2-fixers. Decrease in carbonate contents could be due to dissolution and/or dilution by increasing detrital input. High Ti, K and Zr and decreased Si contents at the P/E boundary indicate high weathering index (CIA), which coincides with significant kaolinite input and suggests intense chemical weathering under humid conditions at the beginning of the PETM. Two anoxic intervals are observed along the PETM. The lower one may be linked to methane released from the continental shelf with no change in the redox proxies, where the upper anoxic to euxinic conditions are revealed by increasing U, Mo, V, Fe and the presence of small size pyrite framboids (2-5fim). Productivity sensitive elements (Cu, Ni, and Cd) show their maximum concentrated within the upper anoxic interval suggesting high productivity in surface water. The obtained data highlight that intense weathering and subsequent nutrient inputs are crucial parameters in the chain of the PETM events, triggering productivity during the recovery phase. In the terrestrial environments, the establishment of wetland conditions and consequence continental climatic shift towards more humid conditions led to migration of modern mammals northward following the extension of the tropical belts. Relative ages of this mammal event based on bio-chemo- and paleomagnetic stratigraphy support a migration path originating from Asia into Europe and North America, followed by later migration from Asia into India and suggests a barrier to migration that is likely linked to the timing of the India-Asia collision. In contrast, at Esplugafereda, northeastern Spain, the terrestrial environment reacted differently. Two significant S13C shifts with the lower one linked to the PETM and the upper corresponding to the Early Eocene Thermal Maximum (ETM2); 180/160 paleothermometry performed on two different soil carbonate nodule reveal a temperature increase of around 8°C during the PETM. The prominent increase in kaolinite content within the PETM is linked to increased runoff and/or weathering of adjacent and coeval soils. These results demonstrate that the PETM coincides globally with extreme climatic fluctuations and that terrestrial environments are very likely to record such climatic changes. - La transition Paléocène-Eocène (55,8±0,2 Ma) est marquée par un réchauffement extraordinaire communément appelé « Paleocene-Eocene Thermal Maximum » (PETM). Les données géochimiques caractérisant les sédiments marins et continentaux de cette période indiquent que ce réchauffement a été déclenché par une augmentation massive de CO2 lié à la déstabilisation des hydrates de méthane stockés le long des marges océaniques. L'étude des événements PETM constitue donc un bon analogue avec le réchauffement actuel. Le volume de CO2 émis durant le PETM est comparable avec le CO2 lié à l'activité actuelle humaine. La compréhension des causes du réchauffement du PETM peut être cruciale pour prévoir et évaluer les conséquences du réchauffement anthropogénique, en particulier les répercussions d'un tel réchauffement sur les domaines continentaux et océaniques. De nombreux facteurs entrent en ligne de compte dans le cas du PETM, tels que la paléogéographie, la paléotopographie et les paléoenvironnement. Pour mieux comprendre les réponses environnementales aux événements du PETM, 2 types d'environnements ont été choisis : (1) le domaine marin ouvert mais relativement peu profond (Wadi Nukhul. Sinai, Dababiya, Luxor, Egypte), (2) le milieu continental marécageux humide (mines de lignite, Inde) et fluviatile, semi-aride (Esplugafreda, Pyrénées espagnoles). Dans le domaine marin, le PETM est caractérisé par des excursions négatives du ô13Ccar et ô13Corg et un shift persistant des valeurs de 815N à ~ 0 %o indiquant une forte activité des organismes (bactéries) fixant l'azote. La diminution des carbonates observée durant le PETM peut-être due à des phénomènes de dissolution ou une augmentation des apports terrigènes. Des taux élevés en Ti, K et Zr et une diminution des montants de Si, reflétés par des valeurs des indices d'altération (CIA) qui coïncident avec une augmentation significative des apports de kaolinite impliquent une altération chimique accrue, du fait de conditions plus humides au début du PETM. Deux événements anoxiques globaux ont été mis en évidence durant le PETM. Le premier, situé dans la partie inférieur du PETM, serait lié à la libération des hydrates de méthane stockés le long des talus continentaux et ne correspond pas à des variations significatives des éléments sensibles aux changements de conditions redox. Le second est caractérisé par une augmentation des éléments U, Mo, V et Fe et la présence de petit framboids de pyrite dont la taille varie entre 2 et 5pm. Le second épisode anoxique est caractérisé par une forte augmentation des éléments sensibles aux changements de la productivité (Cu, Ni et Co), indiquant une augmentation de la productivité dans les eaux de surface. Les données obtenues mettent en évidence le rôle crucial joué par l'altération et les apports en nutriments qui en découlent. Ces paramètres sont cruciaux pour la succession des événements qui ont conduit au PETM, et plus particulièrement l'augmentation de la productivité dans la phase de récupération. Durant le PETM, le milieu continental est caractérisé par l'établissement de conditions humides qui ont facilité voir provoqué la migration des mammifères modernes qui ont suivi le déplacement de ces ceintures climatiques. L'âge de cette migration est basé sur des arguments chimiostratigraphiques (isotopes stables), biostratigraphiques et paléomagnétiques. Les données bibliographiques ainsi que celles que nous avons récoltées en Inde, montrent que les mammifères modernes ont d'abord migré depuis l'Asie vers l'Europe, puis dans le continent Nord américain. Ces derniers ne sont arrivés en Inde que plus tardivement, suggérant que le temps de leur migration est lié à la collision Inde-Asie. Dans le Nord-Est de l'Espagne (Esplugafreda), la réponse du milieu continental aux événements PETM est assez différente. Comme en Inde, deux excursions signicatives en ô13C ont été observées. La première correspond au PETM et la seconde est corrélée avec l'optimum thermique de l'Eocène précoce (ETM2). Les isotopes stables de l'oxygène mesurés 2 différents types de nodules calcaires provenant de paléosols suggère une augmentation de 10°C pendant le PETM. Une augmentation simultanée des taux de kaolinite indique une intensification de l'altération chimique et/ou de l'érosion de sols adjacents. Ces résultats démontrent que le PETM coïncide globalement avec des variations climatiques extrêmes qui sont très aisément reconnaissables dans les dépôts continentaux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time  = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (-13±17% and -10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (-24±13% and -26±19%, P<0.01) with alteration of the central activation ratio (-24±24% and -28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: -18±18% and PF: -20±15%, P<0.01) and peak twitch (KE: -33±12%, P<0.001 and PF: -19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·(1)), lactate dehydrogenase (1145±511 UI·L(-1)), C-Reactive Protein (13.1±7.5 mg·L(-1)) and myoglobin (449.3±338.2 µg·L(-1)) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>The first Variscan pseudo-adakites were identified in close association with the Saint-Jean-du-Doigt (SJDD) mafic intrusion (Brittany, France) in a geodynamic context unrelated to subduction. These rocks are trondhjemites emplaced 347 +/- 4 Ma ago as 2-3 km2 bodies and dykes. Trace-element concentrations and Sr-Nd-Pb isotope ratios indicate that the SJDD pseudo-adakites probably resulted from extreme differentiation of an SJDD-type hydrous basaltic magma in a lower continental crust of normal thickness (0.8 GPa). Modelling shows that garnet is not a required phase, which was commonly believed to be the case for continental arc-derived adakite-like rocks. A massive fractionation of amphibole fits the data much better and does not require high pressures, in agreement with the inferred extensional tectonic regime at the time of pluton emplacement. Alternatively, the SJDD pseudo-adakites could have resulted from the melting of newly underplated SJDD mafic precursors, but thermal considerations lead us to believe that this was not the case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Blood pressure (BP) response after renal denervation (RDN) is highly variable. Besides baseline BP, no reliable predictors of response have been consistently identified. The differences between patients showing a major BP decrease after RDN vs. nonresponders have not been studied so far. AIM AND METHODS: We identified extreme BP responders (first quintile) and nonresponders (fifth quintile) to RDN defined according to office or 24-h ambulatory BP in the European Network COordinating research on Renal Denervation database (n = 109) and compared the baseline characteristics and BP changes 6 months after RDN in both subsets. RESULTS: In extreme responders defined according to ambulatory BP, baseline BP and BP changes 6 months after RDN were similar for office and out-of-the office BP. In contrast, extreme responders defined according to office BP were characterized by a huge white-coat effect at baseline, with dramatic shrinkage at 6 months. Compared with nonresponders, extreme responders defined according to office BP were more frequently women, had higher baseline office--but not ambulatory--BP, and higher estimated glomerular filtration rate (eGFR). In contrast, when considering ambulatory BP decrease to define extreme responders and nonresponders, the single relevant difference between both subsets was baseline ambulatory BP. CONCLUSION: This study suggests a major overestimation of BP response after RDN in extreme responders defined according to office, but not ambulatory BP. The association of lower eGFR with poor response to RDN is consistent with our previous analysis. The increased proportion of women in extreme responders may reflect sex differences in drug adherence.