152 resultados para External Carbon
Resumo:
Several factors influencing the carbon isotope ratios (CIR) of endogenous urinary steroids have been identified in recent years. One of these should be the metabolism of steroids inside the body involving numerous different enzymes. A detailed look at this metabolism taking into account differences found between steroids excreted as glucuronides or as sulphates and hydrogen isotope ratios of different steroids pointed out possibility of unequal CIR at the main production sites inside the male body - the testes and the adrenal glands. By administration of β-HCG it is possible to strongly stimulate the steroid production within the testes without influencing the production at the adrenal glands. Therefore, this treatment should result in changed CIR of urinary androgens in contrast to the undisturbed pre-treatment values. Four male volunteers received three injections of β-HCG over a time course of 5 days and collected their urine samples at defined intervals after the last administration. Those samples showing the largest response in contrast to the pre-administration urines were identified by steroid profile measurements and subsequent analysed by GC/C/IRMS. CIR of androsterone, etiocholanolone, testosterone, 5α- and 5β-androstanediol and pregnanediol were compared. While pregnanediol was not influenced, most of the investigated androgens showed depleted values after treatment. The majority of differences were found to be statistically significant and nearly all showed the expected trend towards more depleted δ(13)C-values. These results support the hypothesis of different CIR at different production sites inside the human body. The impact of these findings on doping control analysis will be discussed.
Resumo:
Carbon isotope ratio of androgens in urine specimens is routinely determined to exclude an abuse of testosterone or testosterone prohormones by athletes. Increasing application of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) in the last years for target and systematic investigations on samples has resulted in the demand for rapid sample throughput as well as high selectivity in the extraction process particularly in the case of conspicuous samples. For that purpose, we present herein the complimentary use of an SPE-based assay and an HPLC fractionation method as a two-stage strategy for the isolation of testosterone metabolites and endogenous reference compounds prior to GC/C/IRMS analyses. Assays validation demonstrated acceptable performance in terms of intermediate precision (range: 0.1-0.4 per thousand) and Bland-Altman analyses revealed no significant bias (0.2 per thousand). For further validation of this two-stage analyses strategy, all the specimens (n=124) collected during a major sport event were processed.
Resumo:
Plants naturally produce the lipid-derived polyester cutin, which is found in the plant cuticle that is deposited at the outermost extracellular matrix of the epidermis covering nearly all aboveground tissues. Being at the interface between the cell and the external environment, cutin and the cuticle play important roles in the protection of plants from several stresses. A number of enzymes involved in the synthesis of cutin monomers have recently been identified, including several P450s and one acyl-CoA synthetase, thus representing the first steps toward the understanding of polyester formation and, potentially, polyester engineering to improve the tolerance of plants to stresses, such as drought, and for industrial applications. However, numerous processes underlying cutin synthesis, such as a controlled polymerization, still remain elusive. Suberin is a second polyester found in the extracellular matrix, most often synthesized in root tissues and during secondary growth. Similar to cutin, the function of suberin is to seal off the respective tissue to inhibit water loss and contribute to resistance to pathogen attack. Being the main constituent of cork, suberin is a plant polyester that has already been industrially exploited. Genetic engineering may be worth exploring in order to change the polyester properties for either different applications or to increase cork production in other species. Polyhydroxyalkanoates (PHAs) are attractive polyesters of 3-hydroxyacids because of their properties as bioplastics and elastomers. Although PHAs are naturally found in a wide variety of bacteria, biotechnology has aimed at producing these polymers in plants as a source of cheap and renewable biodegradable plastics. Synthesis of PHA containing various monomers has been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modified in order to achieve this, including the isoprenoid pathway, the fatty acid biosynthetic pathway, and the fatty acid β-oxidation pathway. PHA synthesis has been demonstrated in a number of plants, including monocots and dicots, and up to 40% PHA per gram dry weight has been demonstrated in Arabidopsis thaliana. Despite some successes, production of PHA in crop plants remains a challenging project. PHA synthesis at high level in vegetative tissues, such as leaves, is associated with chlorosis and reduced growth. The challenge for the future is to succeed in synthesis of PHA copolymers with a narrow range of monomer compositions, at levels that do not compromise plant productivity. This goal will undoubtedly require a deeper understanding of plant biochemical pathways and how carbon fluxes through these pathways can be manipulated, areas where plant "omics" can bring very valuable contributions.
Resumo:
Even if there is clinical evidence that carbon monoxide poisoning determines cardiac damage, the literature on the cardiac pathomorphology in such cases is scarce. We investigated the immunohistochemical expression of two known markers of fresh cardiac damage, fibronectin and the terminal complement complex C5b-9, in both cardiac ventricles in 26 cases of CO intoxication (study group, 15 ♀, 11 ♂, mean age 47 years, mean COHb level 65.9%, min. 51%, max. 85%) compared to a group of 23 cases of hanging (n = 23, 4♀, 19♂, mean age 42 years) as well as to 25 cases of myocardial infarction (n = 25, 13♀, 12♂, mean age 64 years). Fresh cardiac damage was detected with the antibody fibronectin in cases of CO poisoning and was prevalently localised at the right ventricle.
Resumo:
The aim of this study was to evaluate adverse effects of multiwalled carbon nanotubes (MWCNT), produced for industrial purposes, on the human epithelial cell line A549. MWCNT were dispersed in dipalmitoyl lecithin (DPL), a component of pulmonary surfactant, and the effects of dispersion in DPL were compared to those in two other media: ethanol (EtOH) and phosphate-buffered saline (PBS). Effects of MWCNT were also compared to those of two asbestos fibers (chrysotile and crocidolite) and carbon black (CB) nanoparticles, not only in A549 cells but also in mesothelial cells (MeT5A human cell line), used as an asbestos-sensitive cell type. MWCNT formed agglomerates on top of both cell lines (surface area 15-35 μm2) that were significantly larger and more numerous in PBS than in EtOH and DPL. Whatever the dispersion media, incubation with 100 μg/ml MWCNT induced a similar decrease in metabolic activity without changing cell membrane permeability or apoptosis. Neither MWCNT cellular internalization nor oxidative stress was observed. In contrast, asbestos fibers penetrated into the cells, decreased metabolic activity but not cell membrane permeability, and increased apoptosis, without decreasing cell number. CB was internalized without any adverse effects. In conclusion, this study demonstrates that MWCNT produced for industrial purposes exert adverse effects without being internalized by human epithelial and mesothelial pulmonary cell lines. [Authors]
Resumo:
Saffaj et al. recently criticized our method of monitoring carbon dioxide in human postmortem cardiac gas samples using Headspace-Gas Chromatography-Mass Spectrometry. According to the authors, their demonstration, based on the latest SFSTP guidelines (established after 2007 [1,2]) fitted for the validation of drug monitoring bioanalytical methods, has put in evidence potential errors. However, our validation approach was built using SFSTP guidelines established before 2007 [3-6]. We justify the use of these guidelines because of the post-mortem context of the study (and not clinical) and the gaseous state of the sample (and not solid or liquid). Using these guidelines, our validation remains correct.
Resumo:
In 58 newborn infants a new iridium oxide sensor was evaluated for transcutaneous carbon dioxide (tcPCO2) monitoring at 42 degrees C with a prolonged fixation time of 24 hours. The correlation of tcPCO2 (y; mm Hg) v PaCO2 (x; mm Hg) for 586 paired values was: y = 4.6 + 1.45x; r = .89; syx = 6.1 mm Hg. The correlation was not influenced by the duration of fixation. The transcutaneous sensor detected hypocapnia (PaCO2 less than 35 mm Hg) in 74% and hypercapnia (PCO2 greater than 45 mm Hg) in 74% of all cases. After 24 hours, calibration shifts were less than 4 mm Hg in 90% of the measuring periods. In 86% of the infants, no skin changes were observed; in 12% of infants, there were transitional skin erythemas and in 2% a blister which disappeared without scarring. In newborn infants with normal BPs, continuous tcPCO2 monitoring at 42 degrees C can be extended for as many as 24 hours without loss of reliability or increased risk for skin burns.
Resumo:
BACKGROUND: Antipyresis is a common clinical practice in intensive care, although it is unknown if fever is harmful, beneficial, or a negligible adverse effect of infection and inflammation. METHODS: In a randomized study, rectal temperature and discomfort were assessed in 38 surgical intensive care unit patients without neurotrauma or severe hypoxemia and with fever (temperature >/=38.5 degrees C) and systemic inflammatory response syndrome. Eighteen patients received external cooling while 20 received no antipyretic treatment. RESULTS: Temperature and discomfort decreased similarly in both groups after 24 hours. No significant differences in recurrence of fever, incidence of infection, antibiotic therapy, intensive care unit and hospital length of stay, or mortality were noted between the groups. CONCLUSIONS: These results suggest that the systematic suppression of fever may not be useful in patients without severe cranial trauma or significant hypoxemia. Letting fever take its natural course does not seem to harm patients with systemic inflammatory response syndrome or influence the discomfort level and may save costs.
Resumo:
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Resumo:
Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.