52 resultados para Escalonamento multidimensional
Resumo:
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model's prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information.
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3, and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity. Conversely, GATA3 mutations and high expression characterized luminal A IDC, suggesting differential modulation of ER activity in ILC and IDC. Proliferation and immune-related signatures determined three ILC transcriptional subtypes associated with survival differences. Mixed IDC/ILC cases were molecularly classified as ILC-like and IDC-like revealing no true hybrid features. This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options.
Resumo:
BACKGROUND: The JAMAR (Juvenile Arthritis Multidimensional Assessment Report) has been developed to evaluate the perception of the patient and his parents on different items: well-being, pain, functional status, quality of life, disease activity, disease course, side effects of medication, therapeutic compliance and satisfaction with illness outcome. Our aim was to compare disease's perception by JIA patients and their parents. METHODS: We included into the study 100 consecutive patients over 7 years of age. We asked both parent and child to complete the JAMAR questionnaire. For each patient we recorded demographic and disease related data. We examined the level of disagreement between children and parents for the quantitative items of the JAMAR: VAS Pain, VAS Disease Activity, VAS Well Being, Juvenile Arthritis Functional Score, HRQoL. Then we looked for a relation between discordance-rate and demographic and clinical variables. RESULTS: Children and parents' median scores for all five items were similar. Individual dyads agreement was low, with a large amount of pairs (80) discordant for at least one item. We found higher MD VAS and JADAS in more discordant dyads, suggesting that when the disease is more active discordance between child and parent increase. CONCLUSION: The JAMAR questionnaire is an important tool that helps clinicians to detect divergent child and parent's disease perceptions. It is essential that both patients and parents fill the JAMAR questionnaire for a complete clinical and psychosocial evaluation.
Resumo:
BACKGROUND: Delirium and frailty - both potentially reversible geriatric syndromes - are seldom studied together, although they often occur jointly in older patients discharged from hospitals. This study aimed to explore the relationship between delirium and frailty in older adults discharged from hospitals. METHODS: Of the 221 patients aged >65 years, who were invited to participate, only 114 gave their consent to participate in this study. Delirium was assessed using the confusion assessment method, in which patients were classified dichotomously as delirious or nondelirious according to its algorithm. Frailty was assessed using the Edmonton Frailty Scale, which classifies patients dichotomously as frail or nonfrail. In addition to the sociodemographic characteristics, covariates such as scores from the Mini-Mental State Examination, Instrumental Activities of Daily Living scale, and Cumulative Illness Rating Scale for Geriatrics and details regarding polymedication were collected. A multidimensional linear regression model was used for analysis. RESULTS: Almost 20% of participants had delirium (n=22), and 76.3% were classified as frail (n=87); 31.5% of the variance in the delirium score was explained by frailty (R (2)=0.315). Age; polymedication; scores of the Confusion Assessment Method (CAM), instrumental activities of daily living, and Cumulative Illness Rating Scale for Geriatrics; and frailty increased the predictability of the variance of delirium by 32% to 64% (R (2)=0.64). CONCLUSION: Frailty is strongly related to delirium in older patients after discharge from the hospital.
Resumo:
It is not uncommon for patients with an advanced disease to express a desire to their physician to hasten their death. Recent studies show that the motivation of such a desire is multifactorial and multidimensional, including depression, physical, psycho-social and spiritual suffering, fears about the process of dying and/or misunderstandings about the options for end-of-life care. The objective of this paper is to propose to the physician how to explore the dimensions of this request and some elements to answer it.
Resumo:
OBJECTIVE: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. METHODS: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. RESULTS: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). CONCLUSION: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. ADVANCES IN KNOWLEDGE: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.