81 resultados para Endogenous rhythm
Resumo:
Mononuclear phagocytes are essential for the innate response to pathogens and for the repair of injured tissue. The cells - which can be broadly divided into circulating monocytes and tissue-resident macrophages and dendritic cells - are selectively equipped to protect the host by mediating pleiotropic and tissue-specific functions. The properties of some mononuclear phagocytes, however, also contribute to the development and the progression of inflammatory diseases. Consequently, current research investigates mononuclear phagocytes into greater detail with the aim to clarify their contributions to pathophysiologic inflammation. Recent studies indicate that circulating monocytes can be divided into distinct populations, which differ in their tissue tropism and functional commitment. Also, tissue macrophages and dendritic cells have been found to adopt context-dependent phenotypes, which can range from "pro-" to "anti-" inflammatory. These findings have markedly contributed to our understanding of the functional heterogeneity of mononuclear phagocyte populations. Yet, in many cases, the factors that control the quantity and/or quality of phagocyte responses in vivo remain largely unknown. The goal of this thesis was to identify cell endogenous and cell exogenous factors that dictate the fate of mononuclear phagocyte populations. To this end we made use of the recent identification of phenotypic markers, which permit to track mononuclear cell types and their lineage precursors. A main approach consisted to define candidate regulatory factors of certain types of mononuclear phagocytes and then to manipulate the expression of these factors in mice so as to address their functions and causal contributions on mononuclear phagocyte lineages in vivo. Human patient material was further used to validate findings. First, we investigated a microRNA and a transcription factor as candidate cell endogenous co- regulators of monocyte subset responses. Second, we studied a tumor-derived hormone as a candidate exogenous factor that amplifies the production of a population of mononuclear phagocytes with tumor-promoting functions. The endogenous and exogenous factors identified in this research appear to act as effective regulators of mononuclear phagocyte responses in vivo and thus may be exploited in future therapeutic approaches to regulate disease-associated inflammation. - Les phagocytes mononucléaires sont essentiels pour la réponse innée aux pathogènes et pour la réparation des tissus lésés. Ces cellules - qui peuvent être largement divisées en deux groupes, les monocytes circulant dans le sang et les macrophages et cellules dendritiques résidant dans les tissus - sont capables de protéger l'hôte en exerçant des fonctions pléiotropiques. Cependant, les propriétés de certains phagocytes mononucléaires contribuent également au développement et à la progression des maladies inflammatoires. Par conséquent, la recherche actuelle étudie les phagocytes mononucléaires plus en détail afin de clarifier leurs contributions à l'inflammation pathophysiologique. Des études récentes indiquent que les monocytes circulants peuvent être divisés en populations distinctes, qui diffèrent dans leur tropisme tissulaire et dans leurs fonctions biologiques. En outre, les macrophages et les cellules dendritiques peuvent adopter des phénotypes dépendants de l'environnement dans lequel ils se trouvent; ces phénotypes peuvent aller du type "pro-" au type "anti-" inflammatoire. Ces récentes découvertes ont contribué à notre compréhension sur l'hétérogénéité fonctionnelle des phagocytes mononucléaires. Pourtant, dans de nombreux cas, les facteurs qui contrôlent la quantité et/ou la qualité des réponses produites par ces cellules restent encore largement inconnus. L'objectif de cette thèse a consisté à identifier de nouveaux facteurs (endogènes ou exogènes) qui contrôlent les phagocytes mononucléaires. Dans ce but, nous avons fait usage de l'identification récente de marqueurs qui permettent d'identifier différents types de phagocytes mononucléaires ainsi que des cellules (souches) dont ils sont issus. Notre approche a consisté à définir des facteurs candidats qui pourraient contrôler certains phagocytes mononucléaires, puis à manipuler l'expression de ces facteurs chez la souris de manière à tester leurs fonctions et leur contributions in vivo. Nous avons également utilisé des échantillons biologiques de patients pour vérifier nos résultats chez l'homme. Tout d'abord, nous avons étudié un microARN et un facteur de transcription pour déterminer si ces deux facteurs opèrent en tant que co-régulateurs d'un certain type de monocytes. Deuxièmement, nous avons considéré une hormone produite par certaines tumeurs afin d'examiner son rôle dans la production d'une population de macrophages qui favorisent la progression des tumeurs. Les facteurs endogènes et exogènes identifiés dans cette recherche semblent agir comme régulateurs dominants de réponses produites par certains phagocytes mononucléaires et pourraient donc être exploités dans de futures approches thérapeutiques afin de contrôler les réponses immunitaires inflammatoires associées a certaines maladies.
Resumo:
PURPOSE: Nonvisual light-dependent functions in humans are conveyed mainly by intrinsically photosensitive retinal ganglion cells, which express melanopsin as photopigment. We aimed to identify the effects of circadian phase and sleepiness across 24 hours on various aspects of the pupil response to light stimulation. METHODS: We tested 10 healthy adults hourly in two 12-hour sessions covering a 24-hour period. Pupil responses to narrow bandwidth red (635 ± 18 nm) and blue (463 ± 24 nm) light (duration of 1 and 30 seconds) at equal photon fluxes were recorded, and correlated with salivary melatonin concentrations at the same circadian phases and to subjective sleepiness ratings. The magnitude of pupil constriction was determined from minimal pupil size. The post-stimulus pupil response was assessed from the pupil size at 6 seconds following light offset, the area within the redilation curve, and the exponential rate of redilation. RESULTS: Among the measured parameters, the pupil size 6 seconds after light offset correlated with melatonin concentrations (P < 0.05) and showed a significant modulation over 24 hours with maximal values after the nocturnal peak of melatonin secretion. In contrast, the post-stimulus pupil response following red light stimulation correlated with subjective sleepiness (P < 0.05) without significant changes over 24 hours. CONCLUSIONS: The post-stimulus pupil response to blue light as a marker of intrinsic melanopsin activity demonstrated a circadian modulation. In contrast, the effect of sleepiness was more apparent in the cone contribution to the pupil response. Thus, pupillary responsiveness to light is under influence of the endogenous circadian clock and subjective sleepiness.
Resumo:
Many new types of vaccines against infectious or malignant diseases are currently being proposed. Careful characterization of the induced immune response is required in assessing their efficiency. While in most studies human tumor antigen-specific T cells are analyzed after in vitro re-stimulation, we investigated these T cells directly ex vivo using fluorescent tetramers. In peripheral blood lymphocytes from untreated melanoma patients with advanced disease, a fraction of tumor antigen (Melan-A/MART-1)-specific T cells were non-naive, thus revealing tumor-driven immune activation. After immunotherapy with synthetic peptides plus adjuvant, we detected tumor antigen-specific T cells that proliferated and differentiated to memory cells in vivo in some melanoma patients. However, these cells did not present the features of effector cells as found in cytomegalovirus specific T cells analyzed in parallel. Thus, peptide plus adjuvant vaccines can lead to activation and expansion of antigen specific CD8(+) T cells in PBL. Differentiation to protective CD8(+) effector cells may, however, require additional vaccine components that stimulate T cells more efficiently, a major challenge for the development of future immunotherapy.
Resumo:
Murine T cell reactivity with products of the minor lymphocyte stimulatory (Mls) locus correlates with the expression of particular variable (V) domains of the T cell receptor (TCR) beta chain. It was recently demonstrated that Mls antigens are encoded by an open reading frame (ORF) in the 3' long terminal repeat of either endogenous or exogenous mouse mammary tumor virus (MMTV). Immature thymocytes expressing reactive TCR-V beta domains are clonally deleted upon exposure to endogenous Mtv's. Mature T cells proliferate vigorously in response to Mls-1a (Mtv-7) in vivo, but induction of specific anergy and deletion after exposure to Mtv-7-expressing cells in the periphery has also been described. We show here that B cells and CD8+ (but not CD4+) T cells from Mtv-7+ mice efficiently induce peripheral deletion of reactive T cells upon transfer to Mtv-7- recipients, whereas only B cells stimulate specific T cell proliferation in vivo. In contrast to endogenous Mtv-7, transfer of B, CD4+, or CD8+ lymphocyte subsets from mice maternally infected with MMTV(SW), an infectious homologue of Mtv-7, results in specific T cell deletion in the absence of a detectable proliferative response. Finally, we show by secondary transfers of infected cells that exogenous MMTV(SW) is transmitted multidirectionally between lymphocyte subsets and ultimately to the mammary gland. Collectively our data demonstrate heterogeneity in the expression and/or presentation of endogenous and exogenous MMTV ORF by lymphocyte subsets and emphasize the low threshold required for induction of peripheral T cell deletion by these gene products.
Resumo:
Ant colonies are known for their complex and efficient social organization that com-pletely lacks hierarchical structure. However, due to methodological difficulties in follow¬ing all ants of a colony, it was until now impossible to investigate the social and temporal organization of colonies. We developed a tracking system that allows tracking the posi¬tions and orientations of several hundred individually labeled ants continuously, providing for the first time quantitative long term data on all individuals of a colony. These data permit reconstructing trajectories, activity patterns and social networks of all ants in a colony and enable us to investigate ant behavior quantitatively in previously unpreceded ways. By analyzing the spatial positions and social interactions of all ants in six colonies for 41 days we show that ant colonies are organized in groups of nurses, nest patrollers and foragers. Workers of each group were highly interconnected and occupied similar spa¬tial locations in the nest. Groups strongly segregated spatially, and were characterized by unique behavioral signatures. Nurses spent most of their time on the brood. Nest patrollers frequently visited the rubbish pile, and foragers frequently visited the forag¬ing arena. In addition nurses were on average younger than nest patrollers who were, in turn, younger than foragers. We further show that workers had a preferred behav¬ioral trajectory and moved from nursing to nest patrolling, and from nest patrolling to foraging. By analyzing the activity patterns of all ants we show that only a third of all workers in a colony exhibit circadian rhythms and that these rhythms shortened by on av¬erage 42 minutes in constant darkness, thereby demonstrating the presence of a functional endogenous clock. Most rhythmic workers were foragers suggesting that rhythmicity is tightly associated with task. Nurses and nest patrollers were arrhythmic which most likely reflects plasticity of the circadian clock, as isolated workers in many species exhibit circadian rhythmicity. Altogether our results emphasize that ant colonies, despite their chaotic appearance, repose on a strong underlying social and temporal organization. - Les colonies de fourmis sont connues pour leur organisation sociale complexe et effi-cace, charactérisée par un manque absolu de structure hiérarchique. Cependant, puisqu'il est techniquement très difficile de suivre toutes les fourmis d'une colonie, il a été jusqu'à maintenant impossible d'étudier l'organisation sociale et temporelle des colonies de four-mis. Nous avons développé un système qui permet d'extraire en temps réel à partir d'images vidéo les positions et orientations de plusieurs centaines de fourmis marquées individuellement. Nous avons pu ainsi générer pour la première fois des données quanti-tatives et longitudinales relatives à des fourmis appartenant à une colonie. Ces données nous ont permis de reconstruire la trajectoire et l'activité de chaque fourmi ainsi que ses réseaux sociaux. Ceci nous a permis d'étudier de manière exhaustive et objective le com-portement de tous les individus d'une colonie. En analysant les données spatiales et les interactions sociales de toutes les fourmis de six colonies qui ont été filmées pendant 41 jours, nous montrons que les fourmis d'une même colonie se répartissent en trois groupes: nourrices, patrouilleuses et approvisionneuses. Les fourmis d'un même groupe interagis-sent fréquemment et occupent le même espace à l'intérieur du nid. L'espace propre à un groupe se recoupe très peu avec celui des autres. Chaque groupe est caractérisé par un comportement typique. Les nourrices s'affairent surtout autour du couvain. Les pa-trouilleuses font de fréquents déplacements vers le tas d'ordures, et les approvisionneuses sortent souvent du nid. Les nourrices sont en moyenne plus jeunes que les patrouilleuses qui, à leur tour, sont plus jeunes que les approvisionneuses. De plus, nous montrons que les ouvrières changent de tâche au cours de leur vie, passant de nourrice à patrouilleuse puis à approvisionneuse. En analysant l'activité de chaque fourmi, nous montrons que seulement un tiers des ouvrières d'une colonie présente des rythmes circadiens et que ces rythmes diminuent en moyenne de 42 minutes lorsqu'il y a obscurité constante, ce qui démontre ainsi la présence d'une horloge endogène. De plus, la plupart des approvi¬sionneuses ont une activité rythmique alors que les nourrices et patrouilleuses présentent une activité arythmique, ce qui suggère que la rythmicité est étroitement associée à la tâche. L'arythmie des nourrices et patrouilleuses repose probablement sur une plasticité de l'horloge endogène car des ouvrières de nombreuses espèces font preuve d'une ryth¬micité circadienne lorsqu'elles sont isolées de la colonie. Dans l'ensemble nos résultats révèlent qu'une colonie de fourmis se fonde sur une solide organisation sociale et tem¬porelle malgré son apparence chaotique.
Resumo:
Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE(-/-)) and apoE(-/-)FAAH(-/-) mice. Anandamide levels were systemically elevated in apoE(-/-) mice after balloon injury. ApoE(-/-)FAAH(-/-) mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE(-/-) controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE(-/-) mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1(-/-) SMCs or when treating apoE(-/-) or apoE(-/-)FAAH(-/-) SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury.
Resumo:
Nitric oxide synthase (NOS) is strongly and transiently expressed in the developing heart but its function is not well documented. This work examined the role, either protective or detrimental, that endogenous and exogenous NO could play in the functioning of the embryonic heart submitted to hypoxia and reoxygenation. Spontaneously beating hearts isolated from 4-day-old chick embryos were either homogenized to determine basal inducible NOS (iNOS) expression and activity or submitted to 30 min anoxia followed by 100 min reoxygenation. The chrono-, dromo- and inotropic responses to anoxia/reoxygenation were determined in the presence of NOS substrate (L-arginine 10 mM), NOS inhibitor L-NIO (1-5 mM), or NO donor (DETA NONOate 10-100 microM). Myocardial iNOS was detectable by immunoblotting and its activity was specifically decreased by 53% in the presence of 5 mM L-NIO. L-Arginine, L-NIO and DETA NONOate at 10 microM had no significant effect on the investigated functional parameters during anoxia/reoxygenation. However, irrespective of anoxia/reoxygenation, DETA NONOate at 100 microM decreased ventricular shortening velocity by about 70%, and reduced atrio-ventricular propagation by 23%. None of the used drugs affected atrial activity and hearts of all experimental groups fully recovered at the end of reoxygenation. These findings indicate that (1) by contrast with adult heart, endogenously released NO plays a minor role in the early response of the embryonic heart to reoxygenation, (2) exogenous NO has to be provided at high concentration to delay postanoxic functional recovery, and (3) sinoatrial pacemaker cells are the less responsive to NO.
Resumo:
Hepatitis C virus (HCV) infection induces the endogenous interferon (IFN) system in the liver in some but not all patients with chronic hepatitis C (CHC). Patients with a pre-activated IFN system are less likely to respond to the current standard therapy with pegylated IFN-alpha. Mitochondrial antiviral signaling protein (MAVS) is an important adaptor molecule in a signal transduction pathway that senses viral infections and transcriptionally activates IFN-beta. The HCV NS3-4A protease can cleave and thereby inactivate MAVS in vitro, and, therefore, might be crucial in determining the activation status of the IFN system in the liver of infected patients. We analyzed liver biopsies from 129 patients with CHC to investigate whether MAVS is cleaved in vivo and whether cleavage prevents the induction of the endogenous IFN system. Cleavage of MAVS was detected in 62 of the 129 samples (48%) and was more extensive in patients with a high HCV viral load. MAVS was cleaved by all HCV genotypes (GTs), but more efficiently by GTs 2 and 3 than by GTs 1 and 4. The IFN-induced Janus kinase (Jak)-signal transducer and activator of transcription protein (STAT) pathway was less frequently activated in patients with cleaved MAVS, and there was a significant inverse correlation between cleavage of MAVS and the expression level of the IFN-stimulated genes IFI44L, Viperin, IFI27, USP18, and STAT1. We conclude that the pre-activation status of the endogenous IFN system in the liver of patients with CHC is in part regulated by cleavage of MAVS.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that can be activated by fatty acids and peroxisome proliferators. The PPAR alpha subtype mediates the pleiotropic effects of these activators in liver and regulates several target genes involved in fatty acid catabolism. In primary hepatocytes cultured in vitro, the PPAR alpha gene is regulated at the transcriptional level by glucocorticoids. We investigated if this hormonal regulation also occurs in the whole animal in physiological situations leading to increased plasma corticosterone levels in rats. We show here that an immobilization stress is a potent and rapid stimulator of PPAR alpha expression in liver but not in hippocampus. The injection of the synthetic glucocorticoid dexamethasone into adult rats produces a similar increase in PPAR alpha expression in liver, whereas the administration of the antiglucocorticoid RU 486 inhibits the stress-dependent stimulation. We conclude that glucocorticoids are major mediators of the stress response. Consistent with this hormonal regulation, hepatic PPAR alpha mRNA and protein levels follow a diurnal rhythm, which parallels that of circulating corticosterone. To test the effects of variations in PPAR alpha expression on PPAR alpha target gene activity, high glucocorticoid-dependent PPAR alpha expression was mimicked in cultured primary hepatocytes. Under these conditions, hormonal stimulation of receptor expression synergizes with receptor activation by WY-14,643 to induce the expression of the PPAR alpha target gene acyl-CoA oxidase. Together, these results show that regulation of the PPAR alpha expression levels efficiently modulates PPAR activator signaling and thus may affect downstream metabolic pathways involved in lipid homeostasis.
Resumo:
TWEAK is a recently cloned novel member of the TNF ligand family. Here we show that soluble TWEAK is sufficient to induce apoptosis in Kym-1 cells within 18 h. TWEAK-induced apoptosis is indirect and is mediated by the interaction of endogenous TNF and TNF receptor (TNFR)1, as each TNFR1-Fc, neutralizing TNF-specific antibodies and TNFR1-specific Fab fragments efficiently antagonize cell death induction. In addition to this indirect mode of action, co-stimulation of Kym-1 cells with TWEAK enhances TNFR1-mediated cell death induction. In contrast to TNF, TWEAK does only modestly activate NF-kappaB or c-jun N-terminal kinase (JNK) in Kym-1 cells. Although TWEAK binding to Kym-1 cells is easily detectable by flow cytometric analysis, we found neither evidence for expression of the recently identified TWEAK receptor Apo3/TRAMP/wsl/DR3/LARD, nor indications for direct interactions of TWEAK with TNFR. Together, these characteristics of TWEAK-induced signaling in Kym-1 cells argue for the existence of an additional, still undefined non-death domain-containing TWEAK receptor in Kym-1 cells.
Resumo:
The authors examine the relation between the perinatal mortality rate (PMR), birth weight in four categories, and hour of birth throughout the week in Switzerland, using data on 672,013 births and 5,764 perinatal deaths recorded between 1979 and 1987. From Monday to Friday, the PMR follows a circadian rhythm with a regular increase from early morning to evening, with a peak for babies born between 7 and 8 p.m. This pattern of variation has two main components: The circadian rhythms for the proportion of births in the four weight categories and the PMR circadian rhythm for babies weighing more than 2.5 kg. According to a cosinor model, which describes about 40% of the total variation in the PMR, the most important determinants are changes in the proportions of births: Low birth weight increases toward the afternoon and night. Mechanisms underlying the weight-specific timing of birth are discussed, including time selection of birth according to obstetric risks, the direct effect of neonatal and obstetric care, and chronobiologic behavior.
Resumo:
Previous functional imaging studies have pointed to the compensatory recruitment of cortical circuits in old age in order to counterbalance the loss of neural efficiency and preserve cognitive performance. Recent electroencephalographic (EEG) analyses reported age-related deficits in the amplitude of an early positive-negative working memory (PN(wm)) component as well as changes in working memory (WM)-load related brain oscillations during the successful performance of the n-back task. To explore the age-related differences of EEG activation in the face of increasing WM demands, we assessed the PN(wm) component area, parietal alpha event-related synchronization (ERS) as well as frontal theta ERS in 32 young and 32 elderly healthy individuals who successfully performed a highly WM demanding 3-back task. PN(wm) area increased with higher memory loads (3- and 2-back > 0-back tasks) in younger subjects. Older subjects reached the maximal values for this EEG parameter during the less WM demanding 0-back task. They showed a rapid development of an alpha ERS that reached its maximal amplitude at around 800 ms after stimulus onset. In younger subjects, the late alpha ERS occurred between 1,200 and 2,000 ms and its amplitude was significantly higher compared with elders. Frontal theta ERS culmination peak decreased in a task-independent manner in older compared with younger cases. Only in younger individuals, there was a significant decrease in the phasic frontal theta ERS amplitude in the 2- and 3-back tasks compared with the detection and 0-back tasks. These observations suggest that older adults display a rapid mobilization of their neural generators within the parietal cortex to manage very low demanding WM tasks. Moreover, they are less able to activate frontal theta generators during attentional tasks compared with younger persons.
Resumo:
The serine protease thrombin plays a role in signalling ischemic neuronal death in the brain. Paradoxically, endogenous neuroprotective mechanisms can be triggered by preconditioning with thrombin (thrombin preconditioning, TPC), leading to tolerance to cerebral ischemia. Here we studied the role of thrombin's endogenous potent inhibitor, protease nexin-1 (PN-1), in ischemia and in tolerance to cerebral ischemia induced by TPC. Cerebral ischemia was modelled in vitro in organotypic hippocampal slice cultures from rats or genetically engineered mice lacking PN-1 or with the reporter gene lacZ knocked into the PN-1 locus PN-1HAPN-1-lacZ/HAPN-1-lacZ (PN-1 KI) exposed to oxygen and glucose deprivation (OGD). We observed increased thrombin enzyme activity in culture homogenates 24 h after OGD. Lack of PN-1 increased neuronal death in the CA1, suggesting that endogenous PN-1 inhibits thrombin-induced neuronal damage after ischemia. OGD enhanced β-galactosidase activity, reflecting PN-1 expression, at one and 24 h, most strikingly in the stratum radiatum, a glial cell layer adjacent to the CA1 layer of ischemia sensitive neurons. TPC, 24 h before OGD, additionally increased PN-1 expression 1 h after OGD, compared to OGD alone. TPC failed to induce tolerance in cultures from PN-1(-/-) mice confirming PN-1 as an important TPC target. PN-1 upregulation after TPC was blocked by the c-Jun N-terminal kinase (JNK) inhibitor, L-JNKI1, known to block TPC. This work suggests that PN-1 is an endogenous neuroprotectant in cerebral ischemia and a potential target for neuroprotection.
Resumo:
Peroxynitrite (PN) is a potent nitrating and oxidizing agent generated during various pathological situations affecting the heart. The negative effects of PN result, at least in part, from its ability to activate caspases and apoptosis. RasGAP is a ubiquitously expressed protein that is cleaved sequentially by caspase-3. At low caspase-3 activity, RasGAP is cleaved into an N-terminal fragment, called fragment N, that protects cells by activating the Ras/PI3K/Akt pathway. At high caspase-3 activity, fragment N is further cleaved and this abrogates its capacity to stimulate the antiapoptotic Akt kinase. Fragment N formation is crucial for the survival of cells exposed to a variety of stresses. Here we investigate the pattern of RasGAP cleavage upon PN stimulation and the capacity of fragment N to protect cardiomyocytes. PN did not lead to sequential cleavage of RasGAP. Indeed, PN did not allow accumulation of fragment N because it induced its rapid cleavage into smaller fragments. No situations were found in cells treated with PN in which the presence of fragment N was associated with survival. However, expression of a caspase-resistant form of fragment N in cardiomyocytes protected them from PN-induced apoptosis. Our results indicate that the antiapoptotic pathway activated by fragment N is effective at inhibiting PN-induced apoptosis (as seen when cardiomyocytes express a capase-3-resistant form of fragment N) but because fragment N is too transiently generated in response to PN, no survival response is effectively produced. This may explain the marked deleterious consequences of PN generation in various organs, including the heart.