118 resultados para Education, Administration|Education, Elementary|Sociology, Social Structure and Development
Resumo:
Digital holographic microscopy (DHM) is a technique that allows obtaining, from a single recorded hologram, quantitative phase image of living cell with interferometric accuracy. Specifically the optical phase shift induced by the specimen on the transmitted wave front can be regarded as a powerful endogenous contrast agent, depending on both the thickness and the refractive index of the sample. Thanks to a decoupling procedure cell thickness and intracellular refractive index can be measured separately. Consequently, Mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), two highly relevant clinical parameters, have been measured non-invasively at a single cell level. The DHM nanometric axial and microsecond temporal sensitivities have permitted to measure the red blood cell membrane fluctuations (CMF) on the whole cell surface. ©2009 COPYRIGHT SPIE--The International Society for Optical Engineering.
Resumo:
Neurologists are frequently consulted because of a pupillary abnormality. An unequal size of the pupils, an unusual shape, white colored pupils, or a poorly reactive pupil are common reasons for referral. A directed history and careful observation of the iris and pupil movements can bear out ocular pathology such as congenital or structural anomalies as the cause of abnormal pupils. Thereafter, it is important to evaluate the neurologic causes of anisocoria and poor pupil function. The first part of this article emphasizes pupillary abnormalities frequently encountered in infants and children and discusses some of the more common acquired iris structural defects. The second part focuses on evaluation of lesions in the neural pathways that result in pupillary dysfunction, with particular attention to those conditions having neurologic, systemic, or visual implications.
Resumo:
Plants are sessile organisms, often characterized by limited dispersal. Seeds and pollen are the critical stages for gene flow. Here we investigate spatial genetic structure, gene dispersal and the relative contribution of pollen vs seed in the movement of genes in a stable metapopulation of the white campion Silene latifolia within its native range. This short-lived perennial plant is dioecious, has gravity-dispersed seeds and moth-mediated pollination. Direct measures of pollen dispersal suggested that large populations receive more pollen than small isolated populations and that most gene flow occurs within tens of meters. However, these studies were performed in the newly colonized range (North America) where the specialist pollinator is absent. In the native range (Europe), gene dispersal could fall on a different spatial scale. We genotyped 258 individuals from large and small (15) subpopulations along a 60 km, elongated metapopulation in Europe using six highly variable microsatellite markers, two X-linked and four autosomal. We found substantial genetic differentiation among subpopulations (global F(ST)=0.11) and a general pattern of isolation by distance over the whole sampled area. Spatial autocorrelation revealed high relatedness among neighboring individuals over hundreds of meters. Estimates of gene dispersal revealed gene flow at the scale of tens of meters (5-30 m), similar to the newly colonized range. Contrary to expectations, estimates of dispersal based on X and autosomal markers showed very similar ranges, suggesting similar levels of pollen and seed dispersal. This may be explained by stochastic events of extensive seed dispersal in this area and limited pollen dispersal.
Resumo:
A hydrophobic cuticle is deposited at the outermost extracellular matrix of the epidermis in primary tissues of terrestrial plants. Besides forming a protective shield against the environment, the cuticle is potentially involved in several developmental processes during plant growth. A high degree of variation in cuticle composition and structure exists between different plant species and tissues. Lots of progress has been made recently in understanding the different steps of biosynthesis, transport, and deposition of cuticular components. However, the molecular mechanisms that underlie cuticular function remain largely elusive.
Resumo:
BACKGROUND AND AIMS: Data from the literature reveal the contrasting influences of family members and friends on the survival of old adults. On one hand, numerous studies have reported a positive association between social relationships and survival. On the other, ties with children may be associated with an increased risk of disability, whereas ties with friends or other relatives tend to improve survival. A five-year prospective, population-based study of 295 Swiss octogenarians tested the hypothesis that having a spouse, siblings or close friends, and regular contacts with relatives or friends are associated with longer survival, even at a very old age. METHODS: Data were collected through individual interviews, and a Cox regression model was applied to assess the effects of kinship and friendship networks on survival, after adjusting for socio-demographic and health-related variables. RESULTS: Our analyses indicate that the presence of a spouse in the household is not significantly related to survival, whereas the presence of siblings at baseline improves the oldest old's chances of surviving five years later. Moreover, the existence of close friends is a central component in the patterns of social relationships of oldest adults, and one which is significantly associated with survival. Overall, the protective effect of social relationships on survival is more related to the quality of those relationships (close friends) than to the frequency of relationships (regular contacts). CONCLUSIONS: We hypothesize that the existence of siblings or close friends may beneficially affect survival, due to the potential influence on the attitudes of octogenarians regarding health practices and adaptive strategies.
Resumo:
In vascular plants, the endodermis establishes a protective diffusion barrier surrounding the vasculature preventing the passive, uncontrolled entry of nutrients absorbed by the plant. It does so by means of a differentiation feature, the "Casparian Strip" (CS), a highly localized cell wall impregnation made of lignin, which seals the extracellular space. Although the existence of this differentiation feature has been intensively described, the mechanisms establishing this hallmark remain obscure. In this work I report, the developmental sequence of events that leads to a differentiated endodermis, in the plant model Arabidopsis thaliana. In addition, my descriptive approach gave important insights as to how these cells define membrane domains involved in the directional transport of nutrients. I also participated in characterizing a new transmembrane protein family, the CASPs, localized to the membrane domain underlying the CS, which we accordingly named the Casparian Strip membrane Domain (CSD). Our molecular analysis indicates that these proteins drive CS establishment. To identify more molecular factors of CS establishment, I performed a forward genetic screen. This screen led to the identification of 11 endodermis permissive mutants, which we named schengen (sgn) mutants. The causative mutations have been mapped to 5 independent loci: SGN1 to SGN5. SGN1 and SGN3 encode Receptor Like Kinases involved in the correct establishment of the CSD. A lack of those kinases leads to an incomplete CSD, which gives rise to interrupted CS barriers. Interestingly, SGN1 seems to also regulate CSD positioning to the middle of endodermal transversal walls. SGN4 encodes an NADPH oxidase involved in lignin polymerization essential for CS formation. The sgn5 mutant induces extra divisions of cortical cells strongly affecting the cell identity, but also leading to incorrect differentiation. A thorough characterization of the sgn2 mutant will follow elsewhere, yet preliminary results indicate that SGN2 encodes an Acyl-CoA N-acyltransferase. . In summary, with my work I have contributed a first set of molecular players of Casparian strip formation and initiated their characterization. Eventually, this might lead to an understanding of the molecular mechanisms of CS establishment in A.thaliana . This in turn will hopefully help to better understand nutrient uptake in higher plants and their response to environmental stresses. - Au sein des plantes vasculaires, l'endoderme représente un tissu protecteur mettant en place une barrière imperméable, empêchant n'importe quel élément de rejoindre les tissus conducteurs par simple diffusion. Cette barrière, appelée « Cadre de Caspary », correspond à une lignification de la paroi de l'endoderme et donne lieu à un cloisonnement de l'espace intercellulaire. Bien que cet élément de différenciation soit décrit en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements aboutissant à l'établissement du cadre de Caspary chez la plante modèle Arabidopsis thaliana. De plus, ce travail apporte de nouvelles connaissances expliquant comment ces cellules définissent des domaines membranaires importants pour le transport des nutriments. Nous décrivons une nouvelle famille de protéines membranaires, les CASPs (« CAparian Strip membrane domain Proteins »), localisées dans un domaine membranaire longeant le cadre de Caspary : le domaine de Caspary (CSD). L'analyse moléculaire des CASPs indique qu'elles dirigent la formation du cadre de Caspary. Par ailleurs, une approche génétique directe nous a permis d'identifier 11 mutants ayant un endoderme perméable. Nous avons nommé ces mutants Schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) qui participent à la délimitation du CSD. L'absence de ces kinases aboutit à un domaine CSD incomplet, se traduisant par un cadre de Caspary discontinu. De plus, SGN1 semble réguler le positionnement du CSD au milieu de la paroi transversale de l'endoderme. SGN4 produit une enzyme de type NADPH oxydase impliquée dans la polymérisation du cadre de Caspary. Dans le mutant sgn5, on observe une division anormale des cellules du cortex créant ainsi une nouvelle couche cellulaire incapable d'achever sa différenciation en endoderme. Quant à la mutation sgn2, bien que nous pensons qu'elle affecte une Acyl-CoA N-acyltransferase, sa caractérisation ne sera réalisée que prochainement. Au final, ce travail procure de nouveaux éléments sur l'établissement du cadre de Caspary qui pourraient être importants afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles. - De par leur immobilité, les plantes terrestres n'ont pas d'autre choix que de puiser leurs ressources dans leur environnement direct. La plante extrait du sol les nutriments qui lui sont nécessaires et les redistribue grâce à des tissus conducteurs. Afin de ne pas s'intoxiquer, il est donc essentiel de pouvoir sélectionner les éléments entrant dans la racine. Etonnement, ce n'est pas la surface des racines qui permet ce contrôle mais un tissu interne appelé endoderme. Ce dernier forme une barrière imperméable qui entoure chaque cellule et crée une jointure permettant de bloquer le passage des éléments entre les cellules. Cette structure, appelée « cadre de Caspary », oblige les éléments à entrer dans les cellules de l'endoderme et à être ainsi sélectionnés. Bien que cette structure soit décrite en détail, sa mise en place reste incomprise. Cette étude indique la suite d'événements qui aboutit à la formation du cadre de Caspary chez la plante modèle Arabidopsis thaliana. Ce travail apporte également de nouvelles connaissances expliquant comment ces cellules définissent, organisent et dirigent le transport des nutriments. Nous décrivons comment certains éléments de la cellule, les protéines CASPs (CAsparian Strip membrane domain Proteins), sont organisées un domaine particulier des membranes afin de créer une plateforme de construction longeant le cadre de Caspary : le domaine de Caspary (CSD). Afin de déterminer ce qu'il se passerait si une plante ne possédait pas de cadre de Caspary, nous avons réalisé une mutagénèse, ou approche génétique directe, et identifié 11 mutants (individu ayant un gène défectueux conduisant à la perte d'une fonction) ayant un endoderme perméable. Nous avons nommé ces mutants schengen, en référence à la zone de libre échange européenne. Les mutations impliquées dans ces mutants affectent 5 gènes désignés de SGN1 à SGN5. Les gènes SGN1 et SGN3 produisent des protéines de type kinases (« Receptor-like Kinases », RLK) servant à l'établissement de la plateforme de construction. L'absence de ces kinases aboutit à une base incomplète, se traduisant par un cadre de Caspary discontinu. Qui plus est, la kinase SGN1 semble réguler le positionnement de la plateforme au milieu de l'endoderme. Le gène SGN4 est par contre, impliqué dans la construction à proprement dite du cadre de Caspary. Dans le mutant sgn5, on observe une nouvelle couche de cellules ressemblant à de l'endoderme mais incapable de former correctement une barrière identique au cadre de Caspary. Quant au dernier mutant, sgn2, bien que cette étude fournisse des indices permettant de comprendre pourquoi le mutant sgn2 est défectueux, nous n'expliquerons ce cas que prochainement. En résumé, ce travail procure de nouvelles connaissances sur l'établissement du cadre de Caspary qui pourraient être importantes afin de comprendre comment les plantes sélectionnent leurs nutriments et résistent à des conditions environnementales parfois hostiles.
Resumo:
DNA sequence variation has been associated with quantitative changes in molecular phenotypes such as gene expression, but its impact on chromatin states is poorly characterized. To understand the interplay between chromatin and genetic control of gene regulation, we quantified allelic variability in transcription factor binding, histone modifications, and gene expression within humans. We found abundant allelic specificity in chromatin and extensive local, short-range, and long-range allelic coordination among the studied molecular phenotypes. We observed genetic influence on most of these phenotypes, with histone modifications exhibiting strong context-dependent behavior. Our results implicate transcription factors as primary mediators of sequence-specific regulation of gene expression programs, with histone modifications frequently reflecting the primary regulatory event.
Resumo:
Pathogens represent a threat to all organisms, which generates a coevolutionary arms race. Social insects provide an interesting system to study host-pathogen interactions, because their defences depend on both the individual and collective responses, and involve genetic, physiological, behavioral and organizational mechanisms. In this thesis, I studied the evolutionary ecology of the resistance of ant queens and workers to natural fungal pathogens. Mechanisms that increase within-colony genetic diversity, like polyandry and polygyny, decrease relatedness among colony mates, which reduces the strength of selection for the evolution and maintenance of altruistic behavior. A leading hypothesis posits that intracolonial genetic diversity is adaptive because it reduces the risk of pathogen transmission. In chapter 1, I examine individual resistance in ant workers of Formica selysi, a species that shows natural variation in colony queen number. I discuss how this variation might be beneficial to resist natural fungal pathogens in groups. Overall my results indicate that there is genetic variation for fungal resistance in workers, a requirement for the 'genetic diversity for pathogen resistance' hypothesis. However I was not able to detect direct evidence that group diversity improves the survival of focal ants or reduces pathogen transmission. Thus, although the coexistence of multiple queens increases the within-colony variance in worker resistance, it remains unclear whether it protects ant colonies from pathogens and whether it is comparable to polyandry in other social insects. Traditionally, it was thought that the immune system of invertebrates lacked memory and specificity. In chapter 2, I investigate individual immunity in ant queens and show that they may be able to adjust their pathogen defences in response to their current environment by means of immune priming, which bears similarities with the adaptive immunity of vertebrates. However, my results indicate that the expression of immune priming in ant queens may be influenced by factors like mating status, mating conditions or host species. In addition, I showed that mating increases pathogen resistance in çhe two ant species that I studied (F. selysi and Lasius niger). This raises the question of how ant queens invest heavily in both maintenance and reproduction, which I discuss in the context of the evolution of social organization. In chapter 3,1 investigate if transgenerational priming against a fungal pathogen protects the queen progeny. I failed to detect this effect, and discuss why the detection of transgenerational immune priming in ants is a difficult task. Overall, this thesis illustrates some of the individual and collective mechanisms that likely played a role in allowing ants to become one of the most diverse and ecologically successful groups of organisms. -- Les pathogènes représentent une menace pour tous les organismes, ce qui a engendré l'évolution d'une course aux armements. Les insectes sociaux sont un système intéressant permettant d'étudier les interactions hôtes-pathogènes, car leurs défenses dépendent de réponses aussi bien individuelles que collectives, et impliquent des mécanismes génétiques, physiologiques, comportementaux et organisationnels. Dans cette thèse, j'ai étudié l'écologie évolutive de la résistance des reines et des ouvrières de fourmis exposées à des champignons pathogènes. Les facteurs augmentant la diversité génétique à l'intérieur de la colonie, comme la polyandrie et la polygynie, diminuent la parenté, ce qui réduit la pression de sélection pour l'évolution et la maintenance des comportements altruistes. Une hypothèse dominante stipule que la diversité génétique à l'intérieur de la colonie est adaptative car elle réduit le risque de transmission des pathogènes. Dans le chapitre 1, nous examinons la résistance individuelle à des pathogènes fongiques chez les ouvrières de Formica selysi, une espèce présentant une variation naturelle dans le nombre de reines par colonie. Nous discutons aussi de la possibilité que ces variations individuelles augmentent la capacité du groupe à résister à des champignons pathogènes. Dans l'ensemble, nos résultats indiquent une variation génétique dans la résistance aux champignons chez les ouvrières, un prérequis à l'hypothèse que la diversité génétique du groupe augmente la résistance aux pathogènes. Cependant, nous n'avons pas pu détecter une preuve directe que la diversité du groupe augmente la survie de fourmis focales ou réduise la transmission des pathogènes. Ainsi, bien que la coexistence de plusieurs reines augmente la variance dans la résistance des ouvrières à l'intérieur de la colonie, la question de savoir si cela protège les colonies de fourmis contre les pathogènes et si cela est comparable à la polyandrie chez d'autres insectes sociaux reste ouverte. Traditionnellement, il était admis que le système immunitaire des invertébrés ne possédait pas de mémoire et était non-spécifique. Dans le chapitre 2, nous avons étudié l'immunité individuelle chez des reines de fourmis. Nous avons montré que les reines pourraient être capables d'ajuster leurs défenses contre les pathogènes en réponse à leur environnement, grâce à une pré-activation du système immunitaire (« immune priming ») ressemblant à l'immunité adaptative des vertébrés. Cependant, nos résultats indiquent que cette pré-activation du système immunitaire chez les reines dépend du fait d'être accouplée ou non, des conditions d'accouplement, ou de l'espèce. De plus, nous avons montré que l'accouplement augmente la résistance aux pathogènes chez les deux espèces que nous avons étudié (F. selysi et Lasius niger). Ceci pose la question de la capacité des reines à investir fortement aussi bien dans la maintenance que dans la reproduction, ce que nous discutons dans le contexte de l'évolution de l'organisation sociale. Dans le chapitre 3, nous étudions si la pré-activation trans-générationelle du système immunitaire [« trans-generational immune priming ») protège la progéniture de la reine contre un champignon pathogène. Nous n'avons par réussi à détecter cet effet, et discutons des raisons pour lesquelles la détection de la pré-activation trans-générationelle du système immunitaire chez les fourmis est une tâche difficile. Dans l'ensemble, cette thèse illustre quelques-uns des mécanismes individuels et collectifs qui ont probablement contribué à la diversité et à l'important succès écologique des fourmis.
Resumo:
The first decade of the twenty-first century may be remembered for the rebirth of consensus on labour market policy. After three decades of bitter political and ideological controversy between a neo-liberal and a traditional social democratic approach, a new model, often labelled flexicurity, has emerged. This model is promoted by numerous political organisations since it promises to put an end to the old trade-off between equality and efficiency. Several countries are embracing the flexicurity model as a blueprint for labour market reform, but others, mostly belonging to the 'Mediterranean Rim', are clearly lagging behind. Why is it so difficult for these countries to implement the flexicurity model? This paper argues that the application of a flexicurity strategy in these countries is complicated by the lack of social trust between social partners and the state as well as political economy traditions that highlight the role of labour market regulation as a source of social protection.
Resumo:
Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.