103 resultados para Edge detection method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. The goal of this study is to evaluate a T2-mapping sequence by: (i) measuring the reproducibility intra- and inter-observer variability in healthy volunteers in two separate scanning session with a T2 reference phantom; (2) measuring the mean T2 relaxation times by T2-mapping in infarcted myocardium in patients with subacute MI and compare it with patient's the gold standard X-ray coronary angiography and healthy volunteers results. Background. Myocardial edema is a consequence of an inflammation of the tissue, as seen in myocardial infarct (MI). It can be visualized by cardiovascular magnetic resonance (CMR) imaging using the T2 relaxation time. T2-mapping is a quantitative methodology that has the potential to address the limitation of the conventional T2-weighted (T2W) imaging. Methods. The T2-mapping protocol used for all MRI scans consisted in a radial gradient echo acquisition with a lung-liver navigator for free-breathing acquisition and affine image registration. Mid-basal short axis slices were acquired.T2-maps analyses: 2 observers semi- automatically segmented the left ventricle in 6 segments accordingly to the AHA standards. 8 healthy volunteers (age: 27 ± 4 years; 62.5% male) were scanned in 2 separate sessions. 17 patients (age : 61.9 ± 13.9 years; 82.4% male) with subacute STEMI (70.6%) and NSTEMI underwent a T2-mapping scanning session. Results. In healthy volunteers, the mean inter- and intra-observer variability over the entire short axis slice (segment 1 to 6) was 0.1 ms (95% confidence interval (CI): -0.4 to 0.5, p = 0.62) and 0.2 ms (95% CI: -2.8 to 3.2, p = 0.94, respectively. T2 relaxation time measurements with and without the correction of the phantom yielded an average difference of 3.0 ± 1.1 % and 3.1 ± 2.1 % (p = 0.828), respectively. In patients, the inter-observer variability in the entire short axis slice (S1-S6), was 0.3 ms (95% CI: -1.8 to 2.4, p = 0.85). Edema location as determined through the T2-mapping and the coronary artery occlusion as determined on X-ray coronary angiography correlated in 78.6%, but only in 60% in apical infarcts. All except one of the maximal T2 values in infarct patients were greater than the upper limit of the 95% confidence interval for normal myocardium. Conclusions. The T2-mapping methodology is accurate in detecting infarcted, i.e. edematous tissue in patients with subacute infarcts. This study further demonstrated that this T2-mapping technique is reproducible and robust enough to be used on a segmental basis for edema detection without the need of a phantom to yield a T2 correction factor. This new quantitative T2-mapping technique is promising and is likely to allow for serial follow-up studies in patients to improve our knowledge on infarct pathophysiology, on infarct healing, and for the assessment of novel treatment strategies for acute infarctions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new ambulatory technique for qualitative and quantitative movement analysis of the humerus is presented. 3D gyroscopes attached on the humerus were used to recognize the movement of the arm and to classify it as flexion, abduction and internal/external rotations. The method was first validated in a laboratory setting and then tested on 31 healthy volunteer subjects while carrying the ambulatory system during 8 h of their daily life. For each recording, the periods of sitting, standing and walking during daily activity were detected using an inertial sensor attached on the chest. During each period of daily activity the type of arm movement (flexion, abduction, internal/external rotation) its velocity and frequency (number of movement/hour) were estimated. The results showed that during the whole daily activity and for each activity (i.e. walking, sitting and walking) the frequency of internal/external rotation was significantly higher while the frequency of abduction was the lowest (P < 0.009). In spite of higher number of flexion, abduction and internal/external rotation in the dominant arm, we have not observed in our population a significant difference with the non-dominant arm, implying that in healthy subjects the arm dominance does not lie considerably on the number of movements. As expected, the frequency of the movement increased from sitting to standing and from standing to walking, while we provide a quantitative value of this change during daily activity. This study provides preliminary evidence that this system is a useful tool for objectively assessing upper-limb activity during daily activity. The results obtained with the healthy population could be used as control data to evaluate arm movement of patients with shoulder diseases during daily activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Terrestrial laser scanning (TLS) is one of the most promising surveying techniques for rockslope characteriza- tion and monitoring. Landslide and rockfall movements can be detected by means of comparison of sequential scans. One of the most pressing challenges of natural hazards is com- bined temporal and spatial prediction of rockfall. An outdoor experiment was performed to ascertain whether the TLS in- strumental error is small enough to enable detection of pre- cursory displacements of millimetric magnitude. This con- sists of a known displacement of three objects relative to a stable surface. Results show that millimetric changes cannot be detected by the analysis of the unprocessed datasets. Dis- placement measurement are improved considerably by ap- plying Nearest Neighbour (NN) averaging, which reduces the error (1σ ) up to a factor of 6. This technique was ap- plied to displacements prior to the April 2007 rockfall event at Castellfollit de la Roca, Spain. The maximum precursory displacement measured was 45 mm, approximately 2.5 times the standard deviation of the model comparison, hampering the distinction between actual displacement and instrumen- tal error using conventional methodologies. Encouragingly, the precursory displacement was clearly detected by apply- ing the NN averaging method. These results show that mil- limetric displacements prior to failure can be detected using TLS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hyperdiploid acute lymphoblastic leukaemia (ALL), the simultaneous occurrence of specific aneuploidies confers a more favourable outcome than hyperdiploidy alone. Interphase (I) FISH complements conventional cytogenetics (CC) through its sensitivity and ability to detect chromosome aberrations in non-dividing cells. To overcome the limits of manual I-FISH, we developed an automated four-colour I-FISH approach and assessed its ability to detect concurrent aneuploidies in ALL. I-FISH was performed using centromeric probes for chromosomes 4, 6, 10 and 17. Parameters established for automatic nucleus selection and signal detection were evaluated (3 controls). Cut-off values were determined (10 controls, 1000 nuclei/case). Combinations of aneuploidies were considered relevant when each aneuploidy was individually significant. Results obtained in 10 ALL patients (1500 nuclei/patient) were compared with those by CC. Various combinations of aneuploidies were identified. All clones detected by CC were observed by I-FISH. I-FISH revealed numerous additional abnormal clones, ranging between 0.1% and 31.6%, based on the large number of nuclei evaluated. Four-colour automated I-FISH permits the identification of concurrent aneuploidies of prognostic significance in hyperdiploid ALL. Large numbers of cells can be analysed rapidly by this method. Owing to its high sensitivity, the method provides a powerful tool for the detection of small abnormal clones at diagnosis and during follow up. Compared to CC, it generates a more detailed cytogenetic picture, the biological and clinical significance of which merits further evaluation. Once optimised for a given set of probes, the system can be easily adapted for other probe combinations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl(-1) of RNA material, without prior PCR amplification and use of labels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : Un nombre croissant de cas de malaria chez les voyageurs et migrants a été rapporté. Bien que l'analyse microscopique des frottis sanguins reste traditionnellement l'outil diagnostic de référence, sa fiabilité dépend considérablement de l'expertise de l'examinateur, pouvant elle-même faire défaut sous nos latitudes. Une PCR multiplex en temps réel a donc été développée en vue d'une standardisation du diagnostic. Un ensemble d'amorces génériques ciblant une région hautement conservée du gène d'ARN ribosomial 18S du genre Plasmodium a tout d'abord été conçu, dont le polymorphisme du produit d'amplification semblait suffisant pour créer quatre sondes spécifiques à l'espèce P. falciparum, P. malariae, P. vivax et P. ovale. Ces sondes utilisées en PCR en temps réel se sont révélées capables de détecter une seule copie de plasmide de P. falciparum, P. malariae, P. vivax et P. ovale spécifiquement. La même sensibilité a été obtenue avec une sonde de screening pouvant détecter les quatre espèces. Quatre-vingt-dix-sept échantillons de sang ont ensuite été testés, dont on a comparé la microscopie et la PCR en temps réel pour 66 (60 patients) d'entre eux. Ces deux méthodes ont montré une concordance globale de 86% pour la détection de plasmodia. Les résultats discordants ont été réévalués grâce à des données cliniques, une deuxième expertise microscopique et moléculaire (laboratoire de Genève et de l'Institut Suisse Tropical de Bâle), ainsi qu'à l'aide du séquençage. Cette nouvelle analyse s'est prononcé en faveur de la méthode moléculaire pour tous les neuf résultats discordants. Sur les 31 résultats positifs par les deux méthodes, la même réévaluation a pu donner raison 8 fois sur 9 à la PCR en temps réel sur le plan de l'identification de l'espèce plasmodiale. Les 31 autres échantillons ont été analysés pour le suivi de sept patients sous traitement antimalarique. Il a été observé une baisse rapide du nombre de parasites mesurée par la PCR en temps réel chez six des sept patients, baisse correspondant à la parasitémie déterminée microscopiquement. Ceci suggère ainsi le rôle potentiel de la PCR en temps réel dans le suivi thérapeutique des patients traités par antipaludéens. Abstract : There have been reports of increasing numbers of cases of malaria among migrants and travelers. Although microscopic examination of blood smears remains the "gold standard" in diagnosis, this method suffers from insufficient sensitivity and requires considerable expertise. To improve diagnosis, a multiplex real-time PCR was developed. One set of generic primers targeting a highly conserved region of the 18S rRNA gene of the genus Plasmodium was designed; the primer set was polymorphic enough internally to design four species-specific probes for P. falciparum, P. vivax, P. malarie, and P. ovale. Real-time PCR with species-specific probes detected one plasmid copy of P. falciparum, P. vivax, P. malariae, and P. ovale specifically. The same sensitivity was achieved for all species with real-time PCR with the 18S screening probe. Ninety-seven blood samples were investigated. For 66 of them (60 patients), microscopy and real-time PCR results were compared and had a crude agreement of 86% for the detection of plasmodia. Discordant results were reevaluated with clinical, molecular, and sequencing data to resolve them. All nine discordances between 18S screening PCR and microscopy were resolved in favor of the molecular method, as were eight of nine discordances at the species level for the species-specific PCR among the 31 samples positive by both methods. The other 31 blood samples were tested to monitor the antimalaria treatment in seven patients. The number of parasites measured by real-time PCR fell rapidly for six out of seven patients in parallel to parasitemia determined microscopically. This suggests a role of quantitative PCR for the monitoring of patients receiving antimalaria therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To target pharmacological prevention, instruments giving an approximation of an individual patient's risk of developing postoperative delirium are available. In view of the variable clinical presentation, identifying patients in whom prophylaxis has failed (that is, who develop delirium) remains a challenge. Several bedside instruments are available for the routine ward and ICU setting. Several have been shown to have a high specificity and sensitivity when compared with the standard definitions according to DSM-IV-TR and ICD-10. The Confusion Assessment Method (CAM) and a version specifically developed for the intensive care setting (CAM-ICU) have emerged as a standard. However, alternatives allowing grading of the severity of delirium are also available. In many units, the approach to delirium follows a three-step strategy. Initially, non-pharmacological multicomponent strategies are used for primary prevention. As a second step, pharmacological prophylaxis may be added. Perioperative administration of haloperidol has been shown to reduce the severity, but not the incidence, of delirium. Perioperative administration of atypical antipsychotics has been shown to reduce the incidence of delirium in specific groups of patients. In patients with delirium, both symptomatic and causal treatment of delirium need to be considered. So far symptomatic treatment of delirium is primarily based on antipsychotics. Currently, cholinesterase inhibitors cannot be recommended and the data on dexmedetomidine are inconclusive. With the exception of alcohol-withdrawal delirium, there is no role for benzodiazepines in the treatment of delirium. It is unclear whether treating delirium prevents long-term sequelae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a silicon chip-based approach for the enhanced sensitivity detection of surface-immobilized fluorescent molecules. Green fluorescent protein (GFP) is bound to the silicon substrate by a disuccinimidyl terephtalate-aminosilane immobilization procedure. The immobilized organic layers are characterized by surface analysis techniques, like ellipsometry, atomic force microscopy (AFM) and X-ray induced photoelectron spectroscopy. We obtain a 20-fold enhancement of the fluorescent signal, using constructive interference effects in a fused silica dielectric layer, deposited before immobilization onto the silicon. Our method opens perspectives to increase by an order of magnitude the fluorescent response of surface immobilized DNA- or protein-based layers for a variety of biosensor applications.