364 resultados para ENERGY-METABOLISM


Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. RESULTS: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252+/-37 and +1093+/-279%, respectively, in the septum (P<0.05)] and of alpha-smooth muscle actin [+34+/-10 and +43+/-14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (-25+/-7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72+/-28 and +121+/-15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [-29+/-9 and -56+/-4%, respectively, in the peri-infarction region (P<0.05)]. CONCLUSION: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To study energy and protein balances in elderly patients after surgery, spontaneous energy and protein intake and resting energy expenditure (REE) were measured in 20 elderly female patients with a femoral neck fracture (mean age 81 +/- 4, SD, range 74-87 years; weight 53 +/- 8, range 42-68 kg) during a 5-6 day period following surgery. REE, measured over 20-40 min by indirect calorimetry using a ventilated canopy, averaged 0.98 +/- 0.15 kcal/min on day 3 and decreased to 0.93 +/- 0.15 kcal/min on day 8-9 postsurgery (p less than 0.02). REE was positively correlated with body weight (r = 0.69, p less than 0.005). Mean REE extrapolated to 24 hr (24-REE) was 1283 +/- 194 kcal/day. Mean daily food energy intake measured over the 5-day follow-up period was 1097 +/- 333 kcal/day and was positively correlated with 24-REE (r = 0.50, p less than 0.05). Daily energy balance was -235 +/- 351 kcal/day on day 3 (p less than 0.01 vs zero) and -13 +/- 392 kcal/day on day 8-9 postsurgery (NS vs zero) with a mean over the study period of -185 +/- 289 kcal/day (p less than 0.01 vs zero). When an extra 100 kcal/day was allowed for the energy cost of physical activity, mean daily energy balance over the 5-day study period was calculated to be -285 +/- 289 kcal/day (p less than 0.01 vs zero). Measurements of total 24-hr urinary nitrogen (N) excretion were obtained in a subgroup of 14 patients.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The control of glucose and energy homeostasis, including feeding behaviour, is tightly regulated by gut-derived peptidic and nonpeptidic endocrine mediators, autonomic nervous signals, as well as nutrients such as glucose. We will review recent findings on the role of the gastrointestinal tract innervation and of portal vein glucose sensors; we will review selected data on the action of gastrointestinally released hormones. RECENT FINDINGS: The involvement of mechanosensory vagal afferents in postprandial meal termination has been clarified using mouse models with selective impairments of genes required for development of mechanosensory fibres. These activate central glucogen-like peptide-1/glucogen-like peptide-2 containing ascending pathways linking the visceroceptive brainstem neurons to hypothalamic nuclei. Mucosal terminals comprise the chemosensory vagal afferents responsive to postprandially released gastrointestinal hormones. The mechanism by which the hepatoportal glucose sensor stimulates glucose utilization by muscles was demonstrated, using genetically modified mice, to be insulin-independent but to require GLUT4 and AMP-kinase. This sensor is a key site of glucogen-like peptide-1 action and plays a critical role in triggering first phase insulin secretion. PeptideYY and ghrelin target intracerebral receptors as they are bidirectionally transported across the blood brain barrier. The anorectic functions of peripherally released peptideYY may however be mediated both via vagal afferents and intracerebral Y2 receptors in the brainstem and arcuate nucleus. SUMMARY: These recent findings demonstrate that the use of improved anatomical and physiological techniques and animal models with targeted gene modifications lead to an improved understanding of the complex role of gastrointestinal signals in the control of energy homeostasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increase in resting energy expenditure (REE) reported in patients with cystic fibrosis (CF) does not necessarily imply an increase in total energy expenditure (TEE). In this study REE was assessed with open-circuit indirect calorimetry, and free-living 24-hour TEE with the heart rate method. Thirteen patients with CF, aged 8 to 24 years, with adequate nutritional status and moderately decreased pulmonary function, were studied. They were compared with 13 healthy control subjects matched for gender, age, height, and nutritional status. Resting energy expenditure was higher in patients with CF (1512 +/- 88 kcal/day) than in control subjects (1339 +/- 76 kcal/day; p less than 0.01), whereas free-living 24-hour TEE (2345 +/- 127 kcal/day and 2358 +/- 256 kcal/day, respectively) and net mechanical work efficiency of walking on a treadmill (20.4 +/- 0.7% and 19.8 +/- 0.6%, respectively) were similar. Respiratory quotient was higher in patients with CF than in control subjects at rest (0.834 +/- 0.009 vs 0.797 +/- 0.008; p less than 0.05), and tended to remain so during physical exercise, indicating a higher contribution of carbohydrate oxidation to energy expenditure. We conclude that in free living conditions, patients with CF can compensate for their increase in REE by a reduction in spontaneous physical activities or other yet undefined mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have described previously a transcription-dependent induction of glycogen resynthesis by the vasoactive intestinal peptide (VIP) or noradrenaline (NA) in astrocytes, which is mediated by cAMP. Because it has been postulated that the cAMP-mediated regulation of energy balance in hepatocytes and adipocytes is channeled at least in part through the CCAAT/enhancer binding protein (C/EBP) family of transcription factors, we tested the hypothesis that C/EBP isoforms could be expressed in mouse cortical astrocytes and that their level of expression could be regulated by VIP, by the VIP-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP), or by NA. We report in this study that in these cells, C/EBP beta and C/EBP delta are induced by VIP, PACAP, or NA via the cAMP second-messenger pathway. Induction of C/EBP beta and -delta mRNA by VIP occurs in the presence of a protein synthesis inhibitor. Thus, c/ebp beta and c/ebp delta behave as cAMP-inducible immediate-early genes in astrocytes. Moreover, transfection of astrocytes with expression vectors selectively producing the transcriptionally active form of C/EBP beta, termed liver-enriched transcriptional activator protein, or C/EBP delta enhance the glycogen resynthesis elicited by NA, whereas an expression vector producing the transcriptionally inactive form of C/EBP beta, termed liver-enriched transcriptional inhibitory protein, reduces this resynthesis. These results support the idea that C/EBP beta and -delta regulate gene expression of energy metabolism-related enzymes in astrocytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Twenty-four-hour energy expenditure (EE), daily and sleeping EE, and the energy cost of a standardized treadmill exercise were assessed in a respiration chamber in 41 young pregnant Gambian women at 12 (n = 11), 24 (n = 15), and 36 (n = 15) wk of gestation and compared with 13 nonpregnant nonlactating (NPNL) control women. The rate of 24-h EE was significantly higher (P less than 0.001) at 36 wk gestation (8443 +/- 243 kJ/d) than in the NPNL group (6971 +/- 172 kJ/d) or at 12 and 24 wk (7088 +/- 222 and 7188 +/- 192 kJ/d, respectively). Per unit body weight, no more differences in 24-h EE, daily and sleeping EE, or energy cost of walking were observed between pregnant and NPNL women. There was no statistical difference in the 24-h respiratory quotient among the groups. We conclude that the state of pregnancy in Gambian women induces a progressive rise in 24-h EE, which becomes significant in the third trimester and is proportional to body weight.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to assess the validity of two common methods used to assess energy intake. A 3-day weighed dietary record and a dietary history were collected and compared with the total daily energy expenditure (TEE) assessed by the heart rate method in a group of 12 obese and 12 nonobese prepubertal children (mean age 9.3 +/- 1.1 years vs 9.3 +/- 0.4 years). The TEE value was higher in obese than in nonobese children (9.89 +/- 1.08 vs 8.13 +/- 1.39 MJ/day; p < 0.01). Energy intake assessed by the dietary record was significantly lower than TEE in the obese children (7.06 +/- 0.98 MJ/day; p < 0.001) but comparable to TEE in the nonobese children (8.03 +/- 0.99 MJ/day; p = not significant). Energy intake assessed by diet history was lower than TEE in the obese children (8.37 +/- 1.35 MJ/day, p < 0.05) but close to TEE in the nonobese children (8.64 +/- 1.54 MJ/day, p = not significant). These results suggest that obese children underreport food intake and that the dietary record and the diet history are not valid means of assessing energy intake in obese prepubertal children.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Critically ill patients with complicated evolution are frequently hypermetabolic, catabolic, and at risk of underfeeding. The study aimed at assessing the relationship between energy balance and outcome in critically ill patients. METHODS: Prospective observational study conducted in consecutive patients staying > or = 5 days in the surgical ICU of a University hospital. Demographic data, time to feeding, route, energy delivery, and outcome were recorded. Energy balance was calculated as energy delivery minus target. Data in means+/-SD, linear regressions between energy balance and outcome variables. RESULTS: Forty eight patients aged 57+/-16 years were investigated; complete data are available in 669 days. Mechanical ventilation lasted 11+/-8 days, ICU stay 15+/-9 was days, and 30-days mortality was 38%. Time to feeding was 3.1+/-2.2 days. Enteral nutrition was the most frequent route with 433 days. Mean daily energy delivery was 1090+/-930 kcal. Combining enteral and parenteral nutrition achieved highest energy delivery. Cumulated energy balance was between -12,600+/-10,520 kcal, and correlated with complications (P < 0.001), already after 1 week. CONCLUSION: Negative energy balances were correlated with increasing number of complications, particularly infections. Energy debt appears as a promising tool for nutritional follow-up, which should be further tested. Delaying initiation of nutritional support exposes the patients to energy deficits that cannot be compensated later on.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is a need to measure energy expenditure in man for a period of 24 h or even several days. The respiration chamber offers a unique opportunity to reach this goal. It allows the study of energy and nutrient balance; from the latter, acute changes in body composition can be obtained. The respiration chamber built in Lausanne is an air-tight room (5 m long, 2.5 m wide, and 2.5 m high) which forms an open circuit ventilated indirect calorimeter. The physical activity of the subject inside the chamber is continuously measured using a radar system based on the Doppler effect. Energy expenditure of obese and lean women was continuously measured over 24 h and diet-induced thermogenesis was assessed by using an approach which allows one to subtract the energy expended for physical activity from the total energy expenditure. Expressed in absolute terms, total energy expenditure was more elevated in the obese than in the lean controls. Basal metabolic rate was also higher in the obese than in the controls, but diet-induced thermogenesis was found to be blunted in the obese. In a second study, the effect of changing the carbohydrate/lipid content of the diet on fuel utilization was assessed in young healthy subjects with the respiration chamber. After a 7-day adaptation to a high-carbohydrate low-fat diet, the fuel mixture oxidized matched the change in nutrient intake. A last example of the use of the respiration chamber is the thermogenic response and changes in body composition due to a 7-day overfeeding of carbohydrate. Diet-induced thermogenesis was found to be 27%; on the last day of overfeeding, carbohydrate balance was reached by oxidation of 50% of the carbohydrate intake, the remaining 50% being converted into lipid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Total energy expenditure (TEE) and patterns of activity were measured by means of a heart rate (HR)-monitoring method in a group of 8-10-year-old children including 13 obese children (weight, 46 +/- 10 kg; fat mass: 32 +/- 9%) and 16 nonobese children (weight, 31 +/- 5 kg; fat mass, 18 +/- 5%). Time for sleeping was not statistically different in the two groups of children (596 +/- 33 vs. 582 +/- 43 min; p = NS). Obese children spent more time doing sedentary activities (400 +/- 129 vs. 295 +/- 127 min; p < 0.05) and less time in nonsedentary activities (449 +/- 126 vs. 563 +/- 135 min; p < 0.05) than nonobese children. Time spent in moderate or vigorous activity-i.e., time spent at a HR between 50% of the maximal O2 uptake (peak VO2) and 70% peak VO2 (moderate) and at a HR > or = 70% peak VO2 (vigorous)-was not statistically different in obese and nonobese children (88 +/- 69 vs. 52 +/- 35 min and 20 +/- 21 vs. 16 +/- 13 min, respectively; p = NS). TEE was significantly higher in the obese group than in the nonobese group (9.46 +/- 1.40 vs. 7.51 +/- 1.67 MJ/day; p < 0.01). The energy expenditure for physical activity (plus thermogenesis) was significantly higher in the obese children (3.98 +/- 1.30 vs. 2.94 +/- 1.39 MJ/day; p < 0.05). The proportion of TEE daily devoted to physical activity (plus thermogenesis) was not significantly different in the two groups, as shown by the ratio between TEE and the postabsorptive metabolic rate (PMR): 1.72 +/- 0.25 obese vs 1.61 +/- 0.28 non-obese. In conclusion, in free-living conditions obese children have a higher TEE than do nonobese children, despite the greater time devoted to sedentary activities. The higher energy cost to perform weight-bearing activities as well as the higher absolute PMR of obese children help explain this apparent paradox.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A number of recent studies revealed that epigenetic modifications play a central role in the regulation of lipid and of other metabolic pathways such as cholesterol homeostasis, bile acid synthesis, glucose and energy metabolism. Epigenetics refers to aspects of genome functions regulated in a DNA sequence-independent fashion. Chromatin structure is controlled by epigenetic mechanisms through DNA methylation and histone modifications. The main modifications are histone acetylation and deacetylation on specific lysine residues operated by two different classes of enzymes: Histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The interaction between these enzymes and histones can activate or repress gene transcription: Histone acetylation opens and activates chromatin, while deacetylation of histones and DNA methylation compact chromatin making it transcriptionally silent. The new evidences on the importance of HDACs in the regulation of lipid and other metabolic pathways will open new perspectives in the comprehension of the pathophysiology of metabolic disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study tested whether the lower economy of walking in healthy elderly subjects is due to greater gait instability. We compared the energy cost of walking and gait instability (assessed by stride to stride changes in the stride time) in octogenarians (G80, n = 10), 65-yr-olds (G65, n = 10), and young controls (G25, n = 10) walking on a treadmill at six different speeds. The energy cost of walking was higher for G80 than for G25 across the different walking speeds (P < 0.05). Stride time variability at preferred walking speed was significantly greater in G80 (2.31 +/- 0.68%) and G65 (1.93 +/- 0.39%) compared with G25 (1.40 +/- 0.30%; P < 0.05). There was no significant correlation between gait instability and energy cost of walking at preferred walking speed. These findings demonstrated greater energy expenditure in healthy elderly subjects while walking and increased gait instability. However, no relationship was noted between these two variables. The increase in energy cost is probably multifactorial, and our results suggest that gait instability is probably not the main contributing factor in this population. We thus concluded that other mechanisms, such as the energy expenditure associated with walking movements and related to mechanical work, or neuromuscular factors, are more likely involved in the higher cost of walking in elderly people.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To evaluate whether an activity monitor based on body acceleration measurement can accurately assess the energy cost of the human locomotion, 12 subjects walked a combination of three different speeds (preferred speed +/- 1 km/h) and seven slopes (-15 to +15% by steps of 5%) on a treadmill. Body accelerations were recorded using a triaxial accelerometer attached to the low back. The mean of the integral of the vector magnitude (norm) of the accelerations (mIAN) was calculated. VO2 was measured using continuous indirect calorimetry. When the results were separately analysed for each incline, mIAN was correlated to VO2 (average r = 0.87, p<0.001, n = 36). VO2 was not significantly correlated to mIAN when data were globally analysed (n = 252). Large relative errors occurred when predicted VO2 (estimated from data of level walking) was compared with measured VO2 for different inclines (-53% at +15% incline, to +55% at -15% incline). It is concluded that without an external measurement of the slope, the standard method of analysis of body accelerations cannot accurately predict the energy cost of uphill or downhill walking.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Different outcomes of the effect of catechin-caffeine mixtures and caffeine-only supplementation on energy expenditure and fat oxidation have been reported in short-term studies. Therefore, a meta-analysis was conducted to elucidate whether catechin-caffeine mixtures and caffeine-only supplementation indeed increase thermogenesis and fat oxidation. First, English-language studies measuring daily energy expenditure and fat oxidation by means of respiration chambers after catechin-caffeine mixtures and caffeine-only supplementation were identified through PubMed. Six articles encompassing a total of 18 different conditions fitted the inclusion criteria. Second, results were aggregated using random/mixed-effects models and expressed in terms of the mean difference in 24 h energy expenditure and fat oxidation between the treatment and placebo conditions. Finally, the influence of moderators such as BMI and dosage on the results was examined as well. The catechin-caffeine mixtures and caffeine-only supplementation increased energy expenditure significantly over 24 h (428.0 kJ (4.7%); P < 0.001 and 429.1 kJ (4.8%); P < 0.001, respectively). However, 24 h fat oxidation was only increased by catechin-caffeine mixtures (12.2 g (16.0%); P < 0.02 and 9.5 g (12.4%); P = 0.11, respectively). A dose-response effect on 24 h energy expenditure and fat oxidation occurred with a mean increase of 0.53 kJ mg(-1) (P < 0.01) and 0.02 g mg(-1) (P < 0.05) for catechin-caffeine mixtures and 0.44 kJ mg(-1) (P < 0.001) and 0.01 g mg(-1) (P < 0.05) for caffeine-only. In conclusion, catechin-caffeine mixtures or a caffeine-only supplementation stimulates daily energy expenditure dose-dependently by 0.4-0.5 kJ mg(-1) administered. Compared with placebo, daily fat-oxidation was only significantly increased after catechin-caffeine mixtures ingestion.