52 resultados para Diurnal firefly
Resumo:
Most organisms use circadian oscillators to coordinate physiological and developmental processes such as growth with predictable daily environmental changes like sunrise and sunset. The importance of such coordination is highlighted by studies showing that circadian dysfunction causes reduced fitness in bacteria and plants, as well as sleep and psychological disorders in humans. Plant cell growth requires energy and water-factors that oscillate owing to diurnal environmental changes. Indeed, two important factors controlling stem growth are the internal circadian oscillator and external light levels. However, most circadian studies have been performed in constant conditions, precluding mechanistic study of interactions between the clock and diurnal variation in the environment. Studies of stem elongation in diurnal conditions have revealed complex growth patterns, but no mechanism has been described. Here we show that the growth phase of Arabidopsis seedlings in diurnal light conditions is shifted 8-12 h relative to plants in continuous light, and we describe a mechanism underlying this environmental response. We find that the clock regulates transcript levels of two basic helix-loop-helix genes, phytochrome-interacting factor 4 (PIF4) and PIF5, whereas light regulates their protein abundance. These genes function as positive growth regulators; the coincidence of high transcript levels (by the clock) and protein accumulation (in the dark) allows them to promote plant growth at the end of the night. Thus, these two genes integrate clock and light signalling, and their coordinated regulation explains the observed diurnal growth rhythms. This interaction may serve as a paradigm for understanding how endogenous and environmental signals cooperate to control other processes.
Resumo:
Ambulatory blood pressure monitoring (ABPM) has become indispensable for the diagnosis and control of hypertension. However, no consensus exists on how daytime and nighttime periods should be defined. OBJECTIVE: To compare daytime and nighttime blood pressure (BP) defined by an actigraph and by body position with BP resulting from arbitrary daytime and nighttime periods. PATIENTS AND METHOD: ABPM, sleeping periods and body position were recorded simultaneously using an actigraph (SenseWear Armband(®)) in patients referred for ABPM. BP results obtained with the actigraph (sleep and position) were compared to the results obtained with fixed daytime (7a.m.-10p.m.) and nighttime (10p.m.-7a.m.) periods. RESULTS: Data from 103 participants were available. More than half of them were taking antihypertensive drugs. Nocturnal BP was lower (systolic BP: 2.08±4.50mmHg; diastolic BP: 1.84±2.99mmHg, P<0.05) and dipping was more marked (systolic BP: 1.54±3.76%; diastolic BP: 2.27±3.48%, P<0.05) when nighttime was defined with the actigraph. Standing BP was higher (systolic BP 1.07±2.81mmHg; diastolic BP: 1.34±2.50mmHg) than daytime BP defined by a fixed period. CONCLUSION: Diurnal BP, nocturnal BP and dipping are influenced by the definition of daytime and nighttime periods. Studies evaluating the prognostic value of each method are needed to clarify which definition should be used.
Resumo:
In peripheral tissues circadian gene expression can be driven either by local oscillators or by cyclic systemic cues controlled by the master clock in the brain's suprachiasmatic nucleus. In the latter case, systemic signals can activate immediate early transcription factors (IETFs) and thereby control rhythmic transcription. In order to identify IETFs induced by diurnal blood-borne signals, we developed an unbiased experimental strategy, dubbed Synthetic TAndem Repeat PROMoter (STAR-PROM) screening. This technique relies on the observation that most transcription factor binding sites exist at a relatively high frequency in random DNA sequences. Using STAR-PROM we identified serum response factor (SRF) as an IETF responding to oscillating signaling proteins present in human and rodent sera. Our data suggest that in mouse liver SRF is regulated via dramatic diurnal changes of actin dynamics, leading to the rhythmic translocation of the SRF coactivator Myocardin-related transcription factor-B (MRTF-B) into the nucleus.
Resumo:
INTRODUCTION: The aim of this study was to evaluate if there is a significant effect of lunar phases on subjective and objective sleep variables in the general population. METHODS: A total of 2125 individuals (51.2% women, age 58.8 ± 11.2 years) participating in a population-based cohort study underwent a complete polysomnography (PSG) at home. Subjective sleep quality was evaluated by a self-rating scale. Sleep electroencephalography (EEG) spectral analysis was performed in 759 participants without significant sleep disorders. Salivary cortisol levels were assessed at awakening, 30 min after awakening, at 11 am, and at 8 pm. Lunar phases were grouped into full moon (FM), waxing/waning moon (WM), and new moon (NM). RESULTS: Overall, there was no significant difference between lunar phases with regard to subjective sleep quality. We found only a nonsignificant (p = 0.08) trend toward a better sleep quality during the NM phase. Objective sleep duration was not different between phases (FM: 398 ± 3 min, WM: 402 ± 3 min, NM: 403 ± 3 min; p = 0.31). No difference was found with regard to other PSG-derived parameters, EEG spectral analysis, or in diurnal cortisol levels. When considering only subjects with apnea/hypopnea index of <15/h and periodic leg movements index of <15/h, we found a trend toward shorter total sleep time during FM (FM: 402 ± 4, WM: 407 ± 4, NM: 415 ± 4 min; p = 0.06) and shorter-stage N2 duration (FM: 178 ± 3, WM: 182 ± 3, NM: 188 ± 3 min; p = 0.05). CONCLUSION: Our large population-based study provides no evidence of a significant effect of lunar phases on human sleep.
Resumo:
BACKGROUND: In humans, low socioeconomic status (SES) across the life course is associated with greater diurnal cortisol production, increased inflammatory activity and higher circulating antibodies for several pathogens, all suggesting a dampened immune response. Recent evidence suggests that DNA methylation of pro-inflammatory genes may be implicated in the biological embedding of the social environment. METHODS: The present study examines the association between life-course SES and DNA methylation of candidate genes, selected on the basis of their involvement in SES-related inflammation, in the context of a genome-wide methylation study. Participants were 857 healthy individuals sampled from the EPIC Italy prospective cohort study. RESULTS: Indicators of SES were associated with DNA methylation of genes involved in inflammation. NFATC1, in particular, was consistently found to be less methylated in individuals with low vs high SES, in a dose-dependent manner. IL1A, GPR132 and genes belonging to the MAPK family were also less methylated among individuals with low SES. In addition, associations were found between SES and CXCL2 and PTGS2, but these genes were consistently more methylated among low SES individuals. CONCLUSIONS: Our findings support the hypothesis that the social environment leaves an epigenetic signature in cells. Although the functional significance of SES-related DNA methylation is still unclear, we hypothesize that it may link SES to chronic disease risk.
Resumo:
Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light-dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5'-Terminal Oligo Pyrimidine tract (5'-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5'-UTR (TISU) motif. The increased translation efficiency of 5'-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation.
Resumo:
PURPOSE: To assess the circadian variations in salivary immunoglobin A (sIgA) and alpha-amylase activity (sAA), biomarkers of mucosal immune function, together with mood during 2 weeks of repeated sprint training in hypoxia (RSH) and normoxia (RSN). METHODS: Over a 2-week period, 17 competitive cross-country skiers performed six training sessions, each consisting of four sets of five 10-s bouts of all-out double-poling under either normobaric hypoxia (FiO2: 13.8 %, 3000 m) or normoxia. The levels of sIgA and sAA activity and mood were determined five times during each of the first (T1) and sixth (T6) days of training, as well as during days preceding (baseline) and after the training intervention (follow-up). RESULTS: With RSH, sIgA was higher on T6 than T1 (P = 0.049), and sAA was increased on days T1, T6, and during the follow-up (P < 0.01). With RSN, sIgA remained unchanged and sAA was elevated on day T1 only (P = 0.04). Similarly, the RSH group demonstrated reduced mood on days T1, T6, and during the follow-up, while mood was lowered only on T1 with RSN (P < 0.01). CONCLUSIONS: The circadian variation of sIgA and sAA activity, biomarkers of mucosal immune function, as well as mood were similar on the first day of training when repeated double-poling sprints were performed with or without hypoxia. Only with RSH did the levels of sIgA and sAA activity rise with time, becoming maximal after six training sessions, when mood was still lowered. Therefore, six sessions of RSH reduced mood, but did not impair mucosal immune function.