52 resultados para DISULFIDE BONDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyphosphate (iPOP) is a linear polymer of orthophosphate units linked together by high energy phosphoanhydride bonds. It is found in all organisms, localized in organelles called acidocalcisomes and ranges from a few to few hundred monomers in length. iPOP has been found to play a vast array of roles in all organisms, including phosphate and energy metabolism, regulation of enzymes, virulence, pathogenicity, bone remodelling and blood clotting, among many others. Recently it was found that iPOP levels were increased in myeloma cells. The growing interest in iPOP in human cell lines makes it an interesting molecule to study. However, not much is known about its metabolism in eukaryotes. Acidocalcisomes are electron dense, acidic organelles that belong to the group of Lysosome Related Organelles (LROs). The conservation of acidocalcisomes among all kingdoms of life is suggestive of their important roles for the organisms. However, they are difficult to analyse because of limited biochemical tools for investigation. Yeast vacuoles present remarkable similarities to acidocalcisomes in terms of their physiological and structural features, including synthesis and storage of iPOP, which make them an ideal candidate to study biological processes which are shared between vacuoles and acidocalcisomes. The availability of tools for genetic manipulation and isolation of vacuoles makes yeast a candidate of choice for the characterization of iPOP synthesis in eukaryotes. Our group has identified the Vacuolar Transporter Chaperone (VTC) complex as iPOP polymerase and identified the catalytic subunit (Vtc4). The goal of my study was to characterize the process of iPOP synthesis by isolated vacuoles and to reconstitute iPOP synthesis in liposomes. The first step was to develop a method for monitoring iPOP by isolated vacuoles over time and comparing it with previously known methods. Next, a detailed characterization was performed to determine the modulators of the process, both for intact as well as solubilized vacuoles. Finally, attempts were made to purify the VTC complex and reconstitute it in liposomes. A parallel line of study was the translocation and storage of synthesized iPOP in the lumen of the vacuoles. As a result of this study, it is possible to determine distinct pools of iPOP- inside and outside the vacuolar lumen. Additionally, I establish that the vacuolar lysate withstands harsh steps during reconstitution on liposomes and retains iPOP synthesizing activity. The next steps will be purification of the intact VTC complex and its structure determination by cryo-electron microscopy. - Les organismes vivants sont composés d'une ou plusieurs cellules responsables des processus biologiques élémentaires tels que la digestion, la respiration, la synthèse et la reproduction. Leur environnement interne est en équilibre et ils réalisent un très grand nombre de réactions chimiques et biochimiques pour maintenir cet équilibre. A différents compartiments cellulaires, ou organelles, sont attribuées des tâches spécifiques pour maintenir les cellules en vie. L'étude de ces fonctions permet une meilleure compréhension de la vie et des organismes vivants. De nombreux processus sont bien connus et caractérisés mais d'autres nécessitent encore des investigations détaillées. L'un de ces processus est le métabolisme des polyphosphates. Ces molécules sont des polymères linéaires de phosphate inorganique dont la taille peut varier de quelques dizaines à quelques centaines d'unités élémentaires. Ils sont présents dans tous les organismes, des bactéries à l'homme. Ils sont localisés principalement dans des compartiments cellulaires appelés acidocalcisomes, des organelles acides observés en microscopie électronique comme des structures denses aux électrons. Les polyphosphates jouent un rôle important dans le stockage et le métabolisme de l'énergie, la réponse au stress, la virulence, la pathogénicité et la résistance aux drogues. Chez l'homme, ils sont impliqués dans la coagulation du sang et le remodelage osseux. De nouvelles fonctions biologiques des polyphosphates sont encore découvertes, ce qui accroît l'intérêt des chercheurs pour ces molécules. Bien que des progrès considérables ont été réalisés afin de comprendre la fonction des polyphosphates chez les bactéries, ce qui concerne la synthèse, le stockage et la dégradation des polyphosphates chez les eucaryotes est mal connu. Les vacuoles de la levure Saccharomyces cerevisiae sont similaires aux acidocalcisomes des organismes supérieurs en termes de structure et de fonction. Les acidocalcisomes sont difficiles à étudier car il n'existe que peu d'outils génétiques et biochimiques qui permettent leur caractérisation. En revanche, les vacuoles peuvent être aisément isolées des cellules vivantes et manipulées génétiquement. Les vacuoles comme les acidocalcisomes synthétisent et stockent les polyphosphates. Ainsi, les découvertes faites grâce aux vacuoles de levures peuvent être extrapolées aux acidocalcisomes des organismes supérieurs. Le but de mon projet était de caractériser la synthèse des polyphosphates par des vacuoles isolées. Au cours de mon travail de thèse, j'ai mis au point une méthode de mesure de la synthèse des polyphosphates par des organelles purifés. Ensuite, j'ai identifié des composés qui modulent la réaction enzymatique lorsque celle-ci a lieu dans la vacuole ou après solubilisation de l'organelle. J'ai ainsi pu mettre en évidence deux groupes distincts de polyphosphates dans le système : ceux au-dehors de la vacuole et ceux en-dedans de l'organelle. Cette observation suggère donc très fortement que les vacuoles non seulement synthétisent les polyphosphates mais aussi transfère les molécules synthétisées de l'extérieur vers l'intérieur de l'organelle. Il est très vraisemblable que les vacuoles régulent le renouvellement des polyphosphates qu'elles conservent, en réponse à des signaux cellulaires. Des essais de purification de l'enzyme synthétisant les polyphosphates ainsi que sa reconstitution dans des liposomes ont également été entrepris. Ainsi, mon travail présente de nouveaux aspects de la synthèse des polyphosphates chez les eucaryotes et les résultats devraient encourager l'élucidation de mécanismes similaires chez les organismes supérieurs. - Les polyphosphates (iPOP) sont des polymères linéaires de phosphates inorganiques liés par des liaisons phosphoanhydres de haute énergie. Ces molécules sont présentes dans tous les organismes et localisées dans des compartiments cellulaires appelés acidocalcisomes. Elles varient en taille de quelques dizaines à quelques centaines d'unités phosphate. Des fonctions nombreuses et variées ont été attribuées aux iPOP dont un rôle dans les métabolismes de l'énergie et du phosphate, dans la régulation d'activités enzymatiques, la virulence, la pathogénicité, le remodelage osseux et la coagulation sanguine. Il a récemment été montré que les cellules de myélome contiennent une grande quantité de iPOP. Il y donc un intérêt croissant pour les iPOP dans les lignées cellulaires humaines. Cependant, très peu d'informations sur le métabolisme des iPOP chez les eucaryotes sont disponibles. Les acidocalcisomes sont des compartiments acides et denses aux électrons. Ils font partie du groupe des organelles similaires aux lysosomes (LROs pour Lysosome Related Organelles). Le fait que les acidocalcisomes soient conservés dans tous les règnes du vivant montrent l'importance de ces compartiments pour les organismes. Cependant, l'analyse de ces organelles est rendue difficile par l'existence d'un nombre limité d'outils biochimiques permettant leur caractérisation. Les vacuoles de levures possèdent des aspects structuraux et physiologiques très similaires à ceux des acidocalcisomes. Par exemple, ils synthétisent et gardent en réserve les iPOP. Ceci fait des vacuoles de levure un modèle idéal pour l'étude de processus biologiques conservés chez les vacuoles et les acidocalcisomes. De plus, la levure est un organisme de choix pour l'étude de la synthèse des iPOP compte-tenu de l'existence de nombreux outils génétiques et la possibilité d'isoler des vacuoles fonctionnelles. Notre groupe a identifié le complexe VTC (Vacuole transporter Chaperone) comme étant responsable de la synthèse des iPOP et la sous-unité Vtc4p comme celle possédant l'activité catalytique. L'objectif de cette étude était de caractériser le processus de synthèse des iPOP en utilisant des vacuoles isolées et de reconstituer la synthèse des iPOP dans des liposomes. La première étape a consisté en la mise au point d'un dosage permettant la mesure de la quantité de iPOP synthétisés par les organelles isolés en fonction du temps. Cette nouvelle méthode a été comparée aux méthodes décrites précédemment dans la littérature. Ensuite, la caractérisation détaillée du processus a permis d'identifier des composés modulateurs de la réaction à la fois pour des vacuoles intactes et des vacuoles solubilisées. Enfin, des essais de purification du complexe VTC et sa reconstitution dans des liposomes ont été entrepris. De façon parallèle, une étude sur la translocation et le stockage des iPOP dans le lumen des vacuoles a été menée. Il a ainsi été possible de mettre en évidence différents groupes de iPOP : les iPOP localisés à l'intérieur et ceux localisés à l'extérieur des vacuoles isolées. De plus, nous avons observé que le lysat vacuolaire n'est pas détérioré par les étapes de reconstitution dans les liposomes et conserve l'activité de synthèse des iPOP. Les prochaines étapes consisteront en la purification du complexe intact et de la détermination de sa structure par cryo-microscopie électronique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work consists of three essays investigating the ability of structural macroeconomic models to price zero coupon U.S. government bonds. 1. A small scale 3 factor DSGE model implying constant term premium is able to provide reasonable a fit for the term structure only at the expense of the persistence parameters of the structural shocks. The test of the structural model against one that has constant but unrestricted prices of risk parameters shows that the exogenous prices of risk-model is only weakly preferred. We provide an MLE based variance-covariance matrix of the Metropolis Proposal Density that improves convergence speeds in MCMC chains. 2. Affine in observable macro-variables, prices of risk specification is excessively flexible and provides term-structure fit without significantly altering the structural parameters. The exogenous component of the SDF is separating the macro part of the model from the term structure and the good term structure fit has as a driving force an extremely volatile SDF and an implied average short rate that is inexplicable. We conclude that the no arbitrage restrictions do not suffice to temper the SDF, thus there is need for more restrictions. We introduce a penalty-function methodology that proves useful in showing that affine prices of risk specifications are able to reconcile stable macro-dynamics with good term structure fit and a plausible SDF. 3. The level factor is reproduced most importantly by the preference shock to which it is strongly and positively related but technology and monetary shocks, with negative loadings, are also contributing to its replication. The slope factor is only related to the monetary policy shocks and it is poorly explained. We find that there are gains in in- and out-of-sample forecast of consumption and inflation if term structure information is used in a time varying hybrid prices of risk setting. In-sample yield forecast are better in models with non-stationary shocks for the period 1982-1988. After this period, time varying market price of risk models provide better in-sample forecasts. For the period 2005-2008, out of sample forecast of consumption and inflation are better if term structure information is incorporated in the DSGE model but yields are better forecasted by a pure macro DSGE model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. L'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Récemment, l?eau liquide a été décrite comme une structure formée d?un réseau aléatoire de liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure à basse température, certaines liaisons hydrogènes sont détruites ce qui est énergétiquement défavorable. Les molécules d?eau s?arrangent alors autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l?eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise les liaisons hydrogènes. Maintenant, la dissolution des particules devient énergétiquement défavorable, et les particules se séparent de l?eau en formant des agrégats qui minimisent leur surface exposée à l?eau. Pourtant, à très haute température, les effets entropiques deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d?eau. En utilisant un modèle basé sur ces changements de structure formée par des liaisons hydrogènes j?ai pu reproduire les phénomènes principaux liés à l?hydrophobicité. J?ai trouvé une région de coexistence de deux phases entre les températures critiques inférieure et supérieure de solubilité, dans laquelle les particules hydrophobes s?agrègent. En dehors de cette région, les particules sont dissoutes dans l?eau. J?ai démontré que l?interaction hydrophobe est décrite par un modèle qui prend uniquement en compte les changements de structure de l?eau liquide en présence d?une particule hydrophobe, plutôt que les interactions directes entre les particules. Encouragée par ces résultats prometteurs, j?ai étudié des solutions aqueuses de particules hydrophobes en présence de co-solvants cosmotropiques et chaotropiques. Ce sont des substances qui stabilisent ou déstabilisent les agrégats de particules hydrophobes. La présence de ces substances peut être incluse dans le modèle en décrivant leur effet sur la structure de l?eau. J?ai pu reproduire la concentration élevée de co-solvants chaotropiques dans le voisinage immédiat de la particule, et l?effet inverse dans le cas de co-solvants cosmotropiques. Ce changement de concentration du co-solvant à proximité de particules hydrophobes est la cause principale de son effet sur la solubilité des particules hydrophobes. J?ai démontré que le modèle adapté prédit correctement les effets implicites des co-solvants sur les interactions de plusieurs corps entre les particules hydrophobes. En outre, j?ai étendu le modèle à la description de particules amphiphiles comme des lipides. J?ai trouvé la formation de différents types de micelles en fonction de la distribution des regions hydrophobes à la surface des particules. L?hydrophobicité reste également un sujet controversé en science des protéines. J?ai défini une nouvelle échelle d?hydrophobicité pour les acides aminés qui forment des protéines, basée sur leurs surfaces exposées à l?eau dans des protéines natives. Cette échelle permet une comparaison meilleure entre les expériences et les résultats théoriques. Ainsi, le modèle développé dans mon travail contribue à mieux comprendre les solutions aqueuses de particules hydrophobes. Je pense que les résultats analytiques et numériques obtenus éclaircissent en partie les processus physiques qui sont à la base de l?interaction hydrophobe.<br/><br/>Despite the importance of water in our daily lives, some of its properties remain unexplained. Indeed, the interactions of water with organic particles are investigated in research groups all over the world, but controversy still surrounds many aspects of their description. In my work I have tried to understand these interactions on a molecular level using both analytical and numerical methods. Recent investigations describe liquid water as random network formed by hydrogen bonds. The insertion of a hydrophobic particle at low temperature breaks some of the hydrogen bonds, which is energetically unfavorable. The water molecules, however, rearrange in a cage-like structure around the solute particle. Even stronger hydrogen bonds are formed between water molecules, and thus the solute particles are soluble. At higher temperatures, this strict ordering is disrupted by thermal movements, and the solution of particles becomes unfavorable. They minimize their exposed surface to water by aggregating. At even higher temperatures, entropy effects become dominant and water and solute particles mix again. Using a model based on these changes in water structure I have reproduced the essential phenomena connected to hydrophobicity. These include an upper and a lower critical solution temperature, which define temperature and density ranges in which aggregation occurs. Outside of this region the solute particles are soluble in water. Because I was able to demonstrate that the simple mixture model contains implicitly many-body interactions between the solute molecules, I feel that the study contributes to an important advance in the qualitative understanding of the hydrophobic effect. I have also studied the aggregation of hydrophobic particles in aqueous solutions in the presence of cosolvents. Here I have demonstrated that the important features of the destabilizing effect of chaotropic cosolvents on hydrophobic aggregates may be described within the same two-state model, with adaptations to focus on the ability of such substances to alter the structure of water. The relevant phenomena include a significant enhancement of the solubility of non-polar solute particles and preferential binding of chaotropic substances to solute molecules. In a similar fashion, I have analyzed the stabilizing effect of kosmotropic cosolvents in these solutions. Including the ability of kosmotropic substances to enhance the structure of liquid water, leads to reduced solubility, larger aggregation regime and the preferential exclusion of the cosolvent from the hydration shell of hydrophobic solute particles. I have further adapted the MLG model to include the solvation of amphiphilic solute particles in water, by allowing different distributions of hydrophobic regions at the molecular surface, I have found aggregation of the amphiphiles, and formation of various types of micelle as a function of the hydrophobicity pattern. I have demonstrated that certain features of micelle formation may be reproduced by the adapted model to describe alterations of water structure near different surface regions of the dissolved amphiphiles. Hydrophobicity remains a controversial quantity also in protein science. Based on the surface exposure of the 20 amino-acids in native proteins I have defined the a new hydrophobicity scale, which may lead to an improvement in the comparison of experimental data with the results from theoretical HP models. Overall, I have shown that the primary features of the hydrophobic interaction in aqueous solutions may be captured within a model which focuses on alterations in water structure around non-polar solute particles. The results obtained within this model may illuminate the processes underlying the hydrophobic interaction.<br/><br/>La vie sur notre planète a commencé dans l'eau et ne pourrait pas exister en son absence : les cellules des animaux et des plantes contiennent jusqu'à 95% d'eau. Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. En particulier, l'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Bien que l?eau soit généralement un bon solvant, un grand groupe de molécules, appelées molécules hydrophobes (du grecque "hydro"="eau" et "phobia"="peur"), n'est pas facilement soluble dans l'eau. Ces particules hydrophobes essayent d'éviter le contact avec l'eau, et forment donc un agrégat pour minimiser leur surface exposée à l'eau. Cette force entre les particules est appelée interaction hydrophobe, et les mécanismes physiques qui conduisent à ces interactions ne sont pas bien compris à l'heure actuelle. Dans mon étude j'ai décrit l'effet des particules hydrophobes sur l'eau liquide. L'objectif était d'éclaircir le mécanisme de l'interaction hydrophobe qui est fondamentale pour la formation des membranes et le fonctionnement des processus biologiques dans notre corps. Récemment, l'eau liquide a été décrite comme un réseau aléatoire formé par des liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure, certaines liaisons hydrogènes sont détruites tandis que les molécules d'eau s'arrangent autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l'eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise la structure de cage autour des particules hydrophobes. Maintenant, la dissolution des particules devient défavorable, et les particules se séparent de l'eau en formant deux phases. A très haute température, les mouvements thermiques dans le système deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d'eau. A l'aide d'un modèle qui décrit le système en termes de restructuration dans l'eau liquide, j'ai réussi à reproduire les phénomènes physiques liés à l?hydrophobicité. J'ai démontré que les interactions hydrophobes entre plusieurs particules peuvent être exprimées dans un modèle qui prend uniquement en compte les liaisons hydrogènes entre les molécules d'eau. Encouragée par ces résultats prometteurs, j'ai inclus dans mon modèle des substances fréquemment utilisées pour stabiliser ou déstabiliser des solutions aqueuses de particules hydrophobes. J'ai réussi à reproduire les effets dûs à la présence de ces substances. De plus, j'ai pu décrire la formation de micelles par des particules amphiphiles comme des lipides dont la surface est partiellement hydrophobe et partiellement hydrophile ("hydro-phile"="aime l'eau"), ainsi que le repliement des protéines dû à l'hydrophobicité, qui garantit le fonctionnement correct des processus biologiques de notre corps. Dans mes études futures je poursuivrai l'étude des solutions aqueuses de différentes particules en utilisant les techniques acquises pendant mon travail de thèse, et en essayant de comprendre les propriétés physiques du liquide le plus important pour notre vie : l'eau.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paradoxically, high-growth, high-investment developing countries tend to experience capital outflows. This paper shows that this allocation puzzle can be explained simply by introducing uninsurable idiosyncratic investment risk in the neoclassical growth model with international trade in bonds, and by taking into account not only TFP catch-up, but also the capital wedge, that is, the distortions on the return to capital. The model fits the two following facts, documented on a sample of 67 countries between 1980 and 2003: (i) TFP growth is positively correlated with capital outflows in a sample including creditor countries; (ii) the long-run level of capital per efficient unit of labor is positively correlated with capital outflows. Consistently, we show that the capital flows predicted by the model are positively correlated with the actual ones in this sample once the capital wedge is accounted for. The fact that Asia dominates global imbalances can be explained by its relatively low capital wedge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on the social-psychological factors that help coping with structural disadvantage, and specifically on the role of cohesive ingroups and the sense of connectedness and efficacy they entail in this process. It aims to complement existing group-based models of coping that are grounded in a categorization perspective to groups and consequently focus exclusively on the large-scale categories made salient in intergroup contexts of comparisons. The dissertation accomplishes this aim through a reconsideration of between-persons relational interdependence as a sufficient and independent antecedent of a sense of groupness, and the benefits that a sense of group connectedness in one's direct environment, regardless of the categorical or relational basis of groupness, might have in the everyday struggles of disadvantaged group members. The three empirical papers aim to validate this approach, outlined in the first theoretical introduction, by testing derived hypotheses. They are based on data collected with youth populations (15-30) from three institutions in French-speaking Switzerland within the context of a larger project on youth transitions. Methods of data collection are paper-pencil questionnaires and in-depth interviews with a selected sub-sample of participants. The key argument of the first paper is that members of socially disadvantaged categories face higher barriers to their life project and that a general sense of connectedness, either based on categorical identities or other proximal groups and relations, mitigates the feeling of powerlessness associated with this experience. The second paper develops and tests a model that defines individual needs satisfaction as antecedent of self-group bonds and the efficacy beliefs derived from these intragroup bonds as the mechanism underlining the role of ingroups in coping. The third paper highlights the complexities that might be associated with the construction of a sense of groupness directly from intergroup comparisons and categorization-based disadvantage, and points out a more subtle understanding of the processes underling the emergence of groupness out of the situation of structural disadvantage. Overall, the findings confirm the central role of ingroups in coping with structural disadvantage and the importance of an understanding of groupness and its role that goes beyond the dominant focus on intergroup contexts and categorization processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal, voltage-independent Na(+) channels that are transiently activated by extracellular acidification. They are involved in pain sensation, the expression of fear, and in neurodegeneration after ischemic stroke. Our study investigates the role of extracellular subunit interactions in ASIC1a function. We identified two regions involved in critical intersubunit interactions. First, formation of an engineered disulfide bond between the palm and thumb domains leads to partial channel closure. Second, linking Glu-235 of a finger loop to either one of two different residues of the knuckle of a neighboring subunit opens the channel at physiological pH or disrupts its activity. This suggests that one finger-knuckle disulfide bond (E235C/K393C) sets the channel in an open state, whereas the other (E235C/Y389C) switches the channel to a non-conducting state. Voltage-clamp fluorometry experiments indicate that both the finger loop and the knuckle move away from the β-ball residue Trp-233 during acidification and subsequent desensitization. Together, these observations reveal that ASIC1a opening is accompanied by a distance increase between adjacent thumb and palm domains as well as a movement of Glu-235 relative to the knuckle helix. Our study identifies subunit interactions in the extracellular loop and shows that dynamic changes of these interactions are critical for normal ASIC function.