55 resultados para DISCOVERIES
Resumo:
The treatment of stage IV melanoma has been revolutionized over the last years with the development of immunotherapies that, for the first time, have shown a significant benefit in overall survival, as well as with extremely effective targeted therapies, that also led to improved survival. These results are the fruits of an important translational research effort that allowed a rational approach with a very fast clinical development. The treatment of metastatic melanoma is, therefore, an illustration of the new paradigms of modern molecular research in oncology. In this review, we will present the various agents that have made the proof of their clinical benefit, as well as the scientific discoveries that allowed their development. Some of the remaining questions will be touched upon with the ongoing clinical trials. Inclusion of patients in these studies remains the top priority to improve on the clinical care.
Resumo:
The treatment of stage IV melanoma has witnessed a very impressive pace of innovation in recent years, to a point where the management of these patients has very little in common to what was standard practice 5 years ago. If the gain in overall survival, the high response rates or the induction of a significant fraction of long survivors are all very exciting news for our patients and their families, the path that led to these discoveries is as important. Rather than empirical, the development of these new strategies has been extremely rational, based on state-of-the-art basic biology and immunology, exemplary translational research and, finally, hypothesis-driven targeted trials that led to rapid approval. In this review, we will cover all the new targeted therapies that have emerged as the results of these translational programs, focusing mainly on signaling pathway- and immune checkpoint-targeted therapies. Taken collectively, these new developments set the bar for a new paradigm in future translational and clinical research in both melanoma as well as other tumor types.
Resumo:
The reversal of congenital hypogonadotropic hypogonadism (CHH) is a relatively recent phenomenon that has gained increasing attention over the past 10 years. Yet to date, only one prospective study has been conducted estimating that 10% (95% confidence interval [CI]: 2%-18%) of cases undergo reversal. [1] Other retrospective studies have reported rates in the range of 5%-8% [2],[3] and a recent study showed 44/308 (14%, 95% CI: 11%-19%) CHH patients underwent reversal. [4] Moreover, a time-to-event analysis in this large cohort revealed a lifetime reversal incidence of 22%. The article by Mao and colleagues presented in this issue is a meaningful contribution to our understanding of reversal as it examines the largest retrospective cohort to date. [5] Interestingly, they report the rate of reversal as 5% (95% CI: 3%-8%) in this Chinese cohort. It is difficult to reconcile the discrepancies in rates of reversibility and direct comparisons are hampered by the variable definitions employed. Using a novel definition for reversal (i.e, either endogenous testosterone (T) >270 ng dl−1 , serum T gradually increasing above 150 ng dl−1 with increased testicular volume, or normal spontaneous sperm production/normal erectile function/ejaculation), Mao and colleagues posit that testicular size and triptorelin-stimulated LH levels are reliable predictive factors for reversal. However, these cannot be considered as hard and fast rules for predicting reversal as the groups intersect - akin to the overlap observed between CHH patients and those with delayed puberty. Indeed, the fact that approximately half (44%, 95% CI: 25%-66%) of the reversal patients in the study by Mao et al.[5] were diagnosed between 17 and 19 years of age, underscores the challenge in differentiating CHH from extreme normal variants of puberty. This study further lends credence the recently reported observations that reversals may relapse. [4],[6] The notion that reversal may not be lasting highlights the vulnerability of the reproductive axis among CHH patients. While the mechanism(s) for relapse are unclear, it seems plausible that environmental, metabolic or psychiatric stressors could contribute. The factors that Mao and colleagues identify as significantly different in cases of reversal, were not informative for identifying those cases that relapsed back to a hypogonadal state. Notably, reversal has been reported in probands harboring mutations in genes underlying CHH. [1],[3],[4],[6] Unfortunately, comprehensive genetic screening on the Chinese cohort is not available. The reversal phenomenon is fascinating for its glimpse into the plasticity of the neuroendocrine control of reproduction. Future directions will almost certainly include investigation of specific genetic signatures and novel biomarkers for predicting reversal (and relapse). Yet CHH is a rare condition and to fully elucidate the biology of reversible CHH, it will be important to harmonize definitions of what constitutes a reversal, carefully phenotype patients and chart the natural history of their CHH. In this way, this unique human disease model may offer further insights into the control of human reproduction and provide opportunities to translate discoveries into enhanced approaches to improve the care and quality of life for these patients.
Resumo:
Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches.
Resumo:
Recent discoveries of recurrent and reciprocal Copy Number Variants (CNVs) using genome- wide studies have led to a new understanding of the etiology of neuropsychiatric disorders. CNVs represent loss (deletion) or gain (duplication) of genomic material. This thesis work is focused on CNVs at the 16p11.2 BP4-BP5 locus, which are among the most frequent etiologies of neurodevelopmental disorders and have been associated with Autism Spectrum Disorders (ASD), schizophrenia, cognitive impairment, alterations of brain size as well as obesity and underweight. Because deletion and duplication of the 16p11.2 locus occur frequently and recurrently (with the same breakpoints), CNVs at this locus represent a powerful paradigm to understand how a genomic region may modulate cognitive and behavioral traits as well as the relationship and shared mechanisms between distinct psychiatric diagnoses such as ASD and schizophrenia. The present dissertation includes three studies: 1) The first project aims at identifying structural brain-imaging endophenotypes in 16p11.2 CNVs carriers at risk for ASD and schizophrenia. The results show that gene dosage at the 16p11.2 locus modulates global brain volumes and neural circuitry, including the reward system, language and social cognition circuits. 2) The second investigates the neuropsychological profile in 16p11.2 deletion and duplication carriers. While deletion carriers show specific deficits in language and inhibition, the profile of duplication carriers is devoid of specific weaknesses and presents enhanced performance in a verbal memory task. 3) The third study on food-related behaviors in 16p11.2 deletion and duplication carriers shows that alterations of the reponse to satiety are present in CNV carriers before the onset of obesity, pointing toward a potential mechanism driving the Body Mass Index increase in deletion carriers. Dysfunctions in the reward system and dopaminergic circuitries could represent a common mechanism playing a role in the phenotype and could be investigated in future studies. Our data strongly suggest that complex cognitive traits correlate to gene dosage in humans. Larger studies including expression data would allow elucidating the contribution of specific genes to these different gene dosage effects. In conclusion, a systematic and careful investigation of cognitive, behavioral and intermediate phenotypes using a gene dosage paradigm has allowed us to advance our understanding of the 16p11.2 BP4-BP5 locus and its effects on neurodevelopment. -- La récente découverte de variations du nombre de copies (CNVs pour 'copy number variants') dans le génome humain a amélioré nos connaissances sur l'étiologie des troubles neuropsychiatriques. Un CNV représente une perte (délétion) ou un gain (duplication) de matériel génétique sur un segment chromosomique. Ce travail de thèse est focalisé sur les CNVs réciproques (délétion et duplication) dans la région 16p11.2 BP4-BP5. Ces CNVs sont une cause fréquente de troubles neurodéveloppementaux et ont été associés à des phénotypes « en miroir » tels que obésité/sous-poids ou macro/microcéphalie mais aussi aux troubles du spectre autistique (TSA), à la schizophrénie et au retard de développement/déficience intellectuelle. La fréquence et la récurrence de la délétion et de la duplication aux mêmes points de cassure font de ces CNVs un paradigme unique pour étudier la relation entre dosage génique et les traits cognitifs et comportementaux, ainsi que les mécanismes partagés par des troubles psychiatriques apparemment distincts tels que les TSA et la schizophrénie. Ce travail de thèse comporte trois études distinctes : 1) l'étude en neuroimagerie structurelle identifie les endophénotypes chez les porteurs de la délétion ou de la duplication. Les résultats montrent une influence du dosage génique sur le volume cérébral total et certaines structures dans les systèmes de récompense, du langage et de la cognition sociale. 2) L'étude des profils neuropsychologiques chez les porteurs de la délétion ou de la duplication montre que la délétion est associée à des troubles spécifiques du langage et de l'inhibition alors que les porteurs de la duplication ne montrent pas de faiblesse spécifique mais des performances mnésiques verbales supérieures à leur niveau cognitif global. 3) L'étude sur les comportements alimentaires met en évidence une altération de la réponse à la satiété qui est présente avant l'apparition de l'obésité. Un dysfonctionnement dans le système de récompense et les circuits dopaminergiques pourrait représenter un mécanisme commun aux différents phénotypes observés chez ces individus porteurs de CNVs au locus 16p11.2. En conclusion, l'utilisation du dosage génique comme outil d'investigation des phénotypes cliniques et endophénotypes nous a permis de mieux comprendre le rôle de la région 16p11.2 BP4-BP5 dans le neurodéveloppement.
Resumo:
The development of dysfunctional or exhausted T cells is characteristic of immune responses to chronic viral infections and cancer. Exhausted T cells are defined by reduced effector function, sustained upregulation of multiple inhibitory receptors, an altered transcriptional program and perturbations of normal memory development and homeostasis. This review focuses on (a) illustrating milestone discoveries that led to our present understanding of T cell exhaustion, (b) summarizing recent developments in the field, and (c) identifying new challenges for translational research. Exhausted T cells are now recognized as key therapeutic targets in human infections and cancer. Much of our knowledge of the clinically relevant process of exhaustion derives from studies in the mouse model of Lymphocytic choriomeningitis virus (LCMV) infection. Studies using this model have formed the foundation for our understanding of human T cell memory and exhaustion. We will use this example to discuss recent advances in our understanding of T cell exhaustion and illustrate the value of integrated mouse and human studies and will emphasize the benefits of bi-directional mouse-to-human and human-to-mouse research approaches.
Resumo:
AIM: In the past few years, spectacular progress in neuroscience has led to the emergence of a new interdisciplinary field, the so-called "neurolaw" whose goal is to explore the effects of neuroscientific discoveries on legal proceedings and legal rules and standards. In the United States, a number of neuroscientific researches are designed specifically to explore legally relevant topics and a case-law has already been developed. In Europe, neuroscientific evidence is increasingly being used in criminal courtrooms, as part of psychiatric testimony, nourishing the debate about the legal implications of brain research in psychiatric-legal settings. Though largely debated, up to now the use of neuroscience in legal contexts had not specifically been regulated by any legislation. In 2011, with the new bioethics law, France has become the first country to admit by law the use of brain imaging in judicial expertise. According to the new law, brain imaging techniques can be used only for medical purposes, or scientific research, or in the context of judicial expertise. This study aims to give an overview of the current state of the neurolaw in the US and Europe, and to investigate the ethical issues raised by this new law and its potential impact on the rights and civil liberties of the offenders. METHOD: An overview of the emergence and development of "neurolaw" in the United States and Europe is given. Then, the new French law is examined in the light of the relevant debates in the French parliament. Consequently, we outline the current tendencies in Neurolaw literature to focus on assessments of responsibility, rather than dangerousness. This tendency is analysed notably in relation to the legal context relevant to criminal policies in France, where recent changes in the legislation and practice of forensic psychiatry show that dangerousness assessments have become paramount in the process of judicial decision. Finally, the potential interpretations of neuroscientific data introduced into psychiatric testimonies by judges are explored. RESULTS: The examination of parliamentary debates showed that the new French law allowing neuroimaging techniques in judicial expertise was introduced in the aim to provide a legal framework that would protect the subject against potential misuses of neuroscience. The underlying fear above all, was that this technology be used as a lie detector, or as a means to predict the subject's behaviour. However, the possibility of such misuse remains open. Contrary to the legislator's wish, the defendant is not fully guaranteed against uses of neuroimaging techniques in criminal courts that would go against their interests and rights. In fact, the examination of the recently adopted legislation in France shows that assessments of dangerousness and of risk of recidivism have become central elements of the criminal policy, which makes it possible, if not likely that neuroimaging techniques be used for the evaluation of the dangerousness of the defendant. This could entail risks for the latter, as judges could perceive neuroscientific data as hard evidence, more scientific and reliable than the soft data of traditional psychiatry. If such neuroscientific data are interpreted as signs of potential dangerousness of a subject rather than as signs of criminal responsibility, defendants may become subjected to longer penalties or measures aiming to ensure public safety in the detriment of their freedom. CONCLUSION: In the current context of accentuated societal need for security, the judge and the expert-psychiatrist are increasingly asked to evaluate the dangerousness of a subject, regardless of their responsibility. Influenced by this policy model, the judge might tend to use neuroscientific data introduced by an expert as signs of dangerousness. Such uses, especially when they subjugate an individual's interest to those of society, might entail serious threats to an individual's freedom and civil liberties.
Resumo:
Integrating single nucleotide polymorphism (SNP) p-values from genome-wide association studies (GWAS) across genes and pathways is a strategy to improve statistical power and gain biological insight. Here, we present Pascal (Pathway scoring algorithm), a powerful tool for computing gene and pathway scores from SNP-phenotype association summary statistics. For gene score computation, we implemented analytic and efficient numerical solutions to calculate test statistics. We examined in particular the sum and the maximum of chi-squared statistics, which measure the strongest and the average association signals per gene, respectively. For pathway scoring, we use a modified Fisher method, which offers not only significant power improvement over more traditional enrichment strategies, but also eliminates the problem of arbitrary threshold selection inherent in any binary membership based pathway enrichment approach. We demonstrate the marked increase in power by analyzing summary statistics from dozens of large meta-studies for various traits. Our extensive testing indicates that our method not only excels in rigorous type I error control, but also results in more biologically meaningful discoveries.
Resumo:
NlmCategory="UNASSIGNED">Alphaproteobacteria include many medically and environmentally important organisms. Despite the diversity of their niches and lifestyles, from free-living to host-associated, they usually rely on very similar mechanisms to control their cell cycles. Studies on Caulobacter crescentus still lay the foundation for understanding the molecular details of pathways regulating DNA replication and cell division and coordinating these two processes with other events of the cell cycle. This review highlights recent discoveries on the regulation and the mode of action of conserved global regulators and small molecules like c-di-GMP and (p)ppGpp, which play key roles in cell cycle control. It also describes several newly identified mechanisms that modulate cell cycle progression in response to stresses or environmental conditions.
Resumo:
Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.