115 resultados para Content-independent embedding
Resumo:
In patients with myelodysplastic syndrome (MDS) precursor cell cultures (colony-forming unit cells, CFU-C) can provide an insight into the growth potential of malignant myeloid cells. In a retrospective single-center study of 73 untreated MDS patients we assessed whether CFU-C growth patterns were of prognostic value in addition to established criteria. Abnormalities were classified as qualitative (i.e. leukemic cluster growth) or quantitative (i.e. strongly reduced/absent growth). Thirty-nine patients (53%) showed leukemic growth, 26 patients (36%) had strongly reduced/absent colony growth, and 12 patients showed both. In a univariate analysis the presence of leukemic growth was associated with strongly reduced survival (at 10 years 4 vs. 34%, p = 0.004), and a high incidence of transformation to AML (76 vs. 32%, p = 0.01). Multivariate analysis identified leukemic growth as a strong and independent predictor of early death (relative risk 2.12, p = 0.03) and transformation to AML (relative risk 2.63, p = 0.04). Quantitative abnormalities had no significant impact on the disease course. CFU- C assays have significant predictive value in addition to established prognostic factors in MDS. Leukemic growth identifies a subpopulation of MDS patients with poor prognosis.
Resumo:
Street demonstrations have received the lion's share of scholarly attention to collective action. This article starts by returning to this research in order to raise some methodological questions about how to collect data on demonstrations and on the validity of the subsequent results. Next, based on my own research on demonstrations, I suggest some questions that deserve to be analyzed. In particular, I argue that we should work more on the psychological effects of participation in demonstrations. One potential line of investigation would be to more systematically explore the socializing effects of political events. Indeed, vivid political events should be important catalysts because they can have significant effects. Events may have an impact at any age but socializing effects will differ based on one's position in the life cycle, from conversion for younger participants to substantiation for older participants. I hypothesize, in line with Mannheim's (1952) "impressionable years" model of socialization research, that people especially recall events as important if they happened in their adolescence or early adulthood.
Resumo:
Investigating macro-geographical genetic structures of animal populations is crucial to reconstruct population histories and to identify significant units for conservation. This approach may also provide information about the intraspecific flexibility of social systems. We investigated the history and current structure of a large number of populations in the communally breeding Bechstein's bat (Myotis bechsteinii). Our aim was to understand which factors shape the species' social system over a large ecological and geographical range. Using sequence data from one coding and one noncoding mitochondrial DNA region, we identified the Balkan Peninsula as the main and probably only glacial refugium of the species in Europe. Sequence data also suggest the presence of a cryptic taxon in the Caucasus and Anatolia. In a second step, we used seven autosomal and two mitochondrial microsatellite loci to compare population structures inside and outside of the Balkan glacial refugium. Central European and Balkan populations both were more strongly differentiated for mitochondrial DNA than for nuclear DNA, had higher genetic diversities and lower levels of relatedness at swarming (mating) sites than in maternity (breeding) colonies, and showed more differentiation between colonies than between swarming sites. All these suggest that populations are shaped by strong female philopatry, male dispersal, and outbreeding throughout their European range. We conclude that Bechstein's bats have a stable social system that is independent from the postglacial history and location of the populations. Our findings have implications for the understanding of the benefits of sociality in female Bechstein's bats and for the conservation of this endangered species.
Resumo:
BACKGROUND: In recent years, treatment options for human immunodeficiency virus type 1 (HIV-1) infection have changed from nonboosted protease inhibitors (PIs) to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) and boosted PI-based antiretroviral drug regimens, but the impact on immunological recovery remains uncertain. METHODS: During January 1996 through December 2004 [corrected] all patients in the Swiss HIV Cohort were included if they received the first combination antiretroviral therapy (cART) and had known baseline CD4(+) T cell counts and HIV-1 RNA values (n = 3293). For follow-up, we used the Swiss HIV Cohort Study database update of May 2007 [corrected] The mean (+/-SD) duration of follow-up was 26.8 +/- 20.5 months. The follow-up time was limited to the duration of the first cART. CD4(+) T cell recovery was analyzed in 3 different treatment groups: nonboosted PI, NNRTI, or boosted PI. The end point was the absolute increase of CD4(+) T cell count in the 3 treatment groups after the initiation of cART. RESULTS: Two thousand five hundred ninety individuals (78.7%) initiated a nonboosted-PI regimen, 452 (13.7%) initiated an NNRTI regimen, and 251 (7.6%) initiated a boosted-PI regimen. Absolute CD4(+) T cell count increases at 48 months were as follows: in the nonboosted-PI group, from 210 to 520 cells/muL; in the NNRTI group, from 220 to 475 cells/muL; and in the boosted-PI group, from 168 to 511 cells/muL. In a multivariate analysis, the treatment group did not affect the response of CD4(+) T cells; however, increased age, pretreatment with nucleoside reverse-transcriptase inhibitors, serological tests positive for hepatitis C virus, Centers for Disease Control and Prevention stage C infection, lower baseline CD4(+) T cell count, and lower baseline HIV-1 RNA level were risk factors for smaller increases in CD4(+) T cell count. CONCLUSION: CD4(+) T cell recovery was similar in patients receiving nonboosted PI-, NNRTI-, and boosted PI-based cART.
Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.
Resumo:
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.
Resumo:
Whereas most T cells arise in the thymus, a distinct lineage of extrathymically derived T cells is present in the gut mucosa. The developmental origin of extrathymic T cells is poorly understood. We show here that Notch-1, a transmembrane receptor involved in T cell fate specification of bipotential T/B precursors in the thymus, is absolutely required for the development of extrathymic (as well as thymus-derived) mature T cells in the intestinal epithelium. In the absence of Notch-1, CD117(+) T cell precursors are relatively more abundant in the gut than the thymus, whereas immature B cells accumulate in the thymus but not the gut. Collectively, these data demonstrate that Notch-1 is essential for both thymic and extrathymic T cell fate specification and further suggest that bipotential T/B precursors that do not receive a Notch-1 signal adopt a B cell fate in the thymus but become developmentally arrested in the gut.
Resumo:
Background: Infection with the hepatitis C virus (HCV) i s associatedwith hepatic iron accumulation. We performed a comprehensive analysisof serum ferritin levels and of their genetic determinants in thepathogenesis and treatment of patients with chronic hepatitis C enrolledin the Swiss Hepatitis C Cohort Study (SCCS).Methods: Serum ferritin levels at baseline o f therapy with p egylatedinterferon-α ( PEG-IFN-α) and ribavirin or b efore liver biopsy werecorrelated with clinical features of c hronic HCV infection, includingnecroinflammatory activity (N=970), fibrosis (N=980), steatosis (N=886)and response to treatment (N=876). The association b etween highferritin levels (> median) and the endpoints w as assessed b y logisticregression. In addition, a candidate gene analysis as well as a genomewideassociation study (GWAS) of serum ferritin levels were performed.Results: S erum ferritin > sex-specific median was one of the strongestpre-treatment predictors of failure to achieve SVR (P<0.0001, OR=0.46,95% CI=0.34-0.60). This association remained highly significant in amultivariate analysis (P=0.0001, OR=0.32, 95% CI=0.18-0.57), with anodds ratio c omparable to that of IL28B g enotype, and persisted afteradjustment for duration of infection. Additional independent predictors ofnonresponse were viral load, HCV genotype, presence of diabetes, andliver fibrosis stage. Higher serum ferritin levels were also independentlyassociated with severe liver fibrosis (P<0.0001, OR=2.67, 95% CI=1.66-4.28) a nd steatosis (P=0.0034, OR=2.34, 95% CI=1.33-4.12), but n otwith necroinflammatory a ctivity (P=0.3). No significant g eneticdeterminants of serum ferritin levels were identified.Conclusions: Elevated serum ferritin levels are associated withadvanced liver fibrosis, hepatic steatosis, and poor r esponse to IFN-α-based therapy in c hronic hepatitis C, i ndependently from IL28Bgenotype.
Resumo:
The monocarboxylate transporter MCT4 is a proton-linked carrier particularly important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is exclusively expressed by astrocytes. Surprisingly, MCT4 expression in primary cultures of mouse cortical astrocytes is conspicuously low, suggesting that an external, nonastrocytic signal is necessary to obtain the observed pattern of expression in vivo. Here, we demonstrate that nitric oxide (NO), delivered by various NO donors, time- and dose-dependently induces MCT4 expression in cultured cortical astrocytes both at the mRNA and protein levels. In contrast, NO does not enhance the expression of MCT1, the other astrocytic monocarboxylate transporter. The transcriptional effect of NO is not mediated by a cGMP-dependent mechanism as shown by the absence of effect of a cGMP analog or of a selective guanylate cyclase inhibitor. NO causes an increase in astrocytic lactate transport capacity which requires the enhancement of MCT4 expression as both are prevented by the use of a specific siRNA against MCT4. In addition, cumulated lactate release by astrocytes over a period of 24 h was also enhanced by NO treatment. Our data suggest that NO represents a putative intercellular signal to control MCT4 expression in astrocytes and in doing so, to facilitate lactate transfer to other surrounding cell types in the central nervous system. © 2011 Wiley-Liss, Inc.
Resumo:
Plasmodium falciparum is the parasite responsible for the most acute form of malaria in humans. Recently, the serine repeat antigen (SERA) in P. falciparum has attracted attention as a potential vaccine and drug target, and it has been shown to be a member of a large gene family. To clarify the relationships among the numerous P. falciparum SERAs and to identify orthologs to SERA5 and SERA6 in Plasmodium species affecting rodents, gene trees were inferred from nucleotide and amino acid sequence data for 33 putative SERA homologs in seven different species. (A distance method for nucleotide sequences that is specifically designed to accommodate differing GC content yielded results that were largely compatible with the amino acid tree. Standard-distance and maximum-likelihood methods for nucleotide sequences, on the other hand, yielded gene trees that differed in important respects.) To infer the pattern of duplication, speciation, and gene loss events in the SERA gene family history, the resulting gene trees were then "reconciled" with two competing Plasmodium species tree topologies that have been identified by previous phylogenetic studies. Parsimony of reconciliation was used as a criterion for selecting a gene tree/species tree pair and provided (1) support for one of the two species trees and for the core topology of the amino acid-derived gene tree, (2) a basis for critiquing fine detail in a poorly resolved region of the gene tree, (3) a set of predicted "missing genes" in some species, (4) clarification of the relationship among the P. falciparum SERA, and (5) some information about SERA5 and SERA6 orthologs in the rodent malaria parasites. Parsimony of reconciliation and a second criterion--implied mutational pattern at two key active sites in the SERA proteins-were also seen to be useful supplements to standard "bootstrap" analysis for inferred topologies.
Resumo:
alpha-Tocopherol is a lipid-soluble antioxidant that helps to prevent oxidative damage to cellular lipids. alpha-Tocopherol is absorbed by the intestine and is taken up and retained by the liver; it is widely presumed that alpha-tocopherol is then delivered to peripheral tissues by the secretion of VLDL. To determine whether VLDL secretion is truly important for the delivery of alpha-tocopherol to peripheral tissues, we examined alpha-tocopherol metabolism in mice that lack microsomal triglyceride transfer protein (Mttp) expression in the liver and therefore cannot secrete VLDL (Mttp(Delta/Delta) mice). Mttp(Delta/Delta) mice have low plasma lipid levels and increased stores of lipids in the liver. Similarly, alpha-tocopherol levels in the plasma were lower in Mttp(Delta/Delta) mice than in controls, whereas hepatic alpha-tocopherol stores were higher. However, alpha-tocopherol levels in the peripheral tissues of Mttp(Delta/Delta) mice were nearly identical to those of control mice, suggesting that VLDL secretion is not critical for the delivery of alpha-tocopherol to peripheral tissues. When fed a diet containing deuterated alpha-tocopherol, Mttp(Delta/Delta) and control mice had similar incorporation of deuterated alpha-tocopherol into plasma and various peripheral tissues. We conclude that the absence of VLDL secretion has little effect on the stores of alpha-tocopherol in peripheral tissues, at least in the mouse.
Biological embedding of early life exposures and disease risk in humans: a role for DNA methylation.
Resumo:
BACKGROUND: Following wider acceptance of "the thrifty phenotype" hypothesis and the convincing evidence that early life exposures can influence adult health even decades after the exposure, much interest has been placed on the mechanisms through which early life exposures become biologically embedded. METHODS: In this review, we summarize the current literature regarding biological embedding of early life experiences. To this end we conducted a literature search to identify studies investigating early life exposures in relation to DNA methylation changes. In addition, we summarize the challenges faced in investigations of epigenetic effects, stemming from the peculiarities of this emergent and complex field. A proper systematic review and meta-analyses were not feasible given the nature of the evidence. RESULTS: We identified 7 studies on early life socioeconomic circumstances, 10 studies on childhood obesity, and 6 studies on early life nutrition all relating to DNA methylation changes that met the stipulated inclusion criteria. The pool of evidence gathered, albeit small, favours a role of epigenetics and DNA methylation in biological embedding, but replication of findings, multiple comparison corrections, publication bias, and causality are concerns remaining to be addressed in future investigations. CONCLUSIONS: Based on these results, we hypothesize that epigenetics, in particular DNA methylation, is a plausible mechanism through which early life exposures are biologically embedded. This review describes the current status of the field and acts as a stepping stone for future, better designed investigations on how early life exposures might become biologically embedded through epigenetic effects. This article is protected by copyright. All rights reserved.
Resumo:
ABSTRACT: BACKGROUND: Upregulation of nuclear factor kappa B (NFκB) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NFκB, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro. METHODS: We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment. RESULTS: Neuropeptide (NP) stimulation induced nuclear translocation of NFκB in a dose-dependent manner in AI cells, also evident as reduced total inhibitor κB (IκB) levels and increased DNA binding in EMSA. These effects were preceded by increased 20 S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NFκB, IκB kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA. CONCLUSIONS: Our results support evidence for a direct mechanistic connection between the NPs and NFκB/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state.
Resumo:
In vertebrates, genome size has been shown to correlate with nuclear and cell sizes, and influences phenotypic features, such as brain complexity. In three different anuran families, advertisement calls of polyploids exhibit longer notes and intervals than diploids, and difference in cellular dimensions have been hypothesized to cause these modifications. We investigated this phenomenon in green toads (Bufo viridis subgroup) of three ploidy levels, in a different call type (release calls) that may evolve independently from advertisement calls, examining 1205 calls, from ten species, subspecies, and hybrid forms. Significant differences between pulse rates of six diploid and four polyploid (3n, 4n) green toad forms across a range of temperatures from 7 to 27 °C were found. Laboratory data supported differences in pulse rates of triploids vs. tetraploids, but failed to reach significance when including field recordings. This study supports the idea that genome size, irrespective of call type, phylogenetic context, and geographical background, might affect call properties in anurans and suggests a common principle governing this relationship. The nuclear-cell size ratio, affected by genome size, seems the most plausible explanation. However, we cannot rule out hypotheses under which call-influencing genes from an unexamined diploid ancestral species might also affect call properties in the hybrid-origin polyploids.