174 resultados para Computational prediction
Resumo:
BACKGROUND: Several markers of atherosclerosis and of inflammation have been shown to predict coronary heart disease (CHD) individually. However, the utility of markers of atherosclerosis and of inflammation on prediction of CHD over traditional risk factors has not been well established, especially in the elderly. METHODS: We studied 2202 men and women, aged 70-79, without baseline cardiovascular disease over 6-year follow-up to assess the risk of incident CHD associated with baseline noninvasive measures of atherosclerosis (ankle-arm index [AAI], aortic pulse wave velocity [aPWV]) and inflammatory markers (interleukin-6 [IL-6], C-reactive protein [CRP], tumor necrosis factor-a [TNF-a]). CHD events were studied as either nonfatal myocardial infarction or coronary death ("hard" events), and "hard" events plus hospitalization for angina, or the need for coronary-revascularization procedures (total CHD events). RESULTS: During the 6-year follow-up, 283 participants had CHD events (including 136 "hard" events). IL-6, TNF-a and AAI independently predicted CHD events above Framingham Risk Score (FRS) with hazard ratios [HR] for the highest as compared with the lowest quartile for IL-6 of 1.95 (95%CI: 1.38-2.75, p for trend<0.001), TNF-a of 1.45 (95%CI: 1.04-2.02, p for trend 0.03), of 1.66 (95%CI: 1.19-2.31) for AAI £0.9, as compared to AAI 1.01-1.30. CRP and aPWV were not independently associated with CHD events. Results were similar for "hard" CHD events. Addition of IL-6 and AAI to traditional cardiovascular risk factors yielded the greatest improvement in the prediction of CHD; C-index for "hard"/total CHD events increased from 0.62/0.62 for traditional risk factors to 0.64/0.64 for IL-6 addition, 0.65/0.63 for AAI, and 0.66/0.64 for IL-6 combined with AAI. Being in the highest quartile of IL-6 combined with an AAI £ 0.90 or >1.40 yielded an HR of 2.51 (1.50-4.19) and 4.55 (1.65-12.50) above FRS, respectively. With use of CHD risk categories, risk prediction at 5 years was more accurate in models that included IL-6, AAI or both, with 8.0, 8.3 and 12.1% correctly reclassified respectively. CONCLUSIONS: Among older adults, markers of atherosclerosis and of inflammation, particularly IL-6 and AAI, are independently associated with CHD. However, these markers only modestly improve cardiovascular risk prediction beyond traditional risk factors. Acknowledgments: This study was supported by Contracts NO1-AG-6-2101, NO1-AG-6- 2103, and NO1-AG-6-2106 of the National Institute on Aging. This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging.
Resumo:
Osteoporotic hip fractures increase dramatically with age and are responsible for considerable morbidity and mortality. Several treatments to prevent the occurrence of hip fracture have been validated in large randomized trials and the current challenge is to improve the identification of individuals at high risk of fracture who would benefit from therapeutic or preventive intervention. We have performed an exhaustive literature review on hip fracture predictors, focusing primarily on clinical risk factors, dual X-ray absorptiometry (DXA), quantitative ultrasound, and bone markers. This review is based on original articles and meta-analyses. We have selected studies that aim both to predict the risk of hip fracture and to discriminate individuals with or without fracture. We have included only postmenopausal women in our review. For studies involving both men and women, only results concerning women have been considered. Regarding clinical factors, only prospective studies have been taken into account. Predictive factors have been used as stand-alone tools to predict hip fracture or sequentially through successive selection processes or by combination into risk scores. There is still much debate as to whether or not the combination of these various parameters, as risk scores or as sequential or concurrent combinations, could help to better predict hip fracture. There are conflicting results on whether or not such combinations provide improvement over each method alone. Sequential combination of bone mineral density and ultrasound parameters might be cost-effective compared with DXA alone, because of fewer bone mineral density measurements. However, use of multiple techniques may increase costs. One problem that precludes comparison of most published studies is that they use either relative risk, or absolute risk, or sensitivity and specificity. The absolute risk of individuals given their risk factors and bone assessment results would be a more appropriate model for decision-making than relative risk. Currently, a group appointed by the World Health Organization and lead by Professor John Kanis is working on such a model. It will therefore be possible to further assess the best choice of threshold to optimize the number of women needed to screen for each country and each treatment.
Resumo:
The prediction of binding modes (BMs) occurring between a small molecule and a target protein of biological interest has become of great importance for drug development. The overwhelming diversity of needs leaves room for docking approaches addressing specific problems. Nowadays, the universe of docking software ranges from fast and user friendly programs to algorithmically flexible and accurate approaches. EADock2 is an example of the latter. Its multiobjective scoring function was designed around the CHARMM22 force field and the FACTS solvation model. However, the major drawback of such a software design lies in its computational cost. EADock dihedral space sampling (DSS) is built on the most efficient features of EADock2, namely its hybrid sampling engine and multiobjective scoring function. Its performance is equivalent to that of EADock2 for drug-like ligands, while the CPU time required has been reduced by several orders of magnitude. This huge improvement was achieved through a combination of several innovative features including an automatic bias of the sampling toward putative binding sites, and a very efficient tree-based DSS algorithm. When the top-scoring prediction is considered, 57% of BMs of a test set of 251 complexes were reproduced within 2 Å RMSD to the crystal structure. Up to 70% were reproduced when considering the five top scoring predictions. The success rate is lower in cross-docking assays but remains comparable with that of the latest version of AutoDock that accounts for the protein flexibility. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011.
Resumo:
BACKGROUND: Guidelines for the prevention of coronary heart disease (CHD) recommend use of Framingham-based risk scores that were developed in white middle-aged populations. It remains unclear whether and how CHD risk prediction might be improved among older adults. We aimed to compare the prognostic performance of the Framingham risk score (FRS), directly and after recalibration, with refit functions derived from the present cohort, as well as to assess the utility of adding other routinely available risk parameters to FRS.¦METHODS: Among 2193 black and white older adults (mean age, 73.5 years) without pre-existing cardiovascular disease from the Health ABC cohort, we examined adjudicated CHD events, defined as incident myocardial infarction, CHD death, and hospitalization for angina or coronary revascularization.¦RESULTS: During 8-year follow-up, 351 participants experienced CHD events. The FRS poorly discriminated between persons who experienced CHD events vs. not (C-index: 0.577 in women; 0.583 in men) and underestimated absolute risk prediction by 51% in women and 8% in men. Recalibration of the FRS improved absolute risk prediction, particulary for women. For both genders, refitting these functions substantially improved absolute risk prediction, with similar discrimination to the FRS. Results did not differ between whites and blacks. The addition of lifestyle variables, waist circumference and creatinine did not improve risk prediction beyond risk factors of the FRS.¦CONCLUSIONS: The FRS underestimates CHD risk in older adults, particularly in women, although traditional risk factors remain the best predictors of CHD. Re-estimated risk functions using these factors improve accurate estimation of absolute risk.
Resumo:
In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging (MRI) and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structure changes we emphasize the necessity of a paradigm shift in the investigation and interpretation of use-dependent brain plasticity. Novel quantitative MRI acquisition techniques provide access to brain tissue microstructural properties (e.g., myelin, iron, and water content) in-vivo, thereby allowing unprecedented specific insights into the mechanisms underlying brain plasticity. These quantitative MRI techniques require novel methods for image processing and analysis of longitudinal data allowing for straightforward interpretation and causality inferences.
Resumo:
Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.
Resumo:
BACKGROUND: Risks of significant infant drug exposurethrough breastmilk are poorly defined for many drugs, and largescalepopulation data are lacking. We used population pharmacokinetics(PK) modeling to predict fluoxetine exposure levels ofinfants via mother's milk in a simulated population of 1000 motherinfantpairs.METHODS: Using our original data on fluoxetine PK of 25breastfeeding women, a population PK model was developed withNONMEM and parameters, including milk concentrations, wereestimated. An exponential distribution model was used to account forindividual variation. Simulation random and distribution-constrainedassignment of doses, dosing time, feeding intervals and milk volumewas conducted to generate 1000 mother-infant pairs with characteristicssuch as the steady-state serum concentrations (Css) and infantdose relative to the maternal weight-adjusted dose (relative infantdose: RID). Full bioavailability and a conservative point estimate of1-month-old infant CYP2D6 activity to be 20% of the adult value(adjusted by weigth) according to a recent study, were assumed forinfant Css calculations.RESULTS: A linear 2-compartment model was selected as thebest model. Derived parameters, including milk-to-plasma ratios(mean: 0.66; SD: 0.34; range, 0 - 1.1) were consistent with the valuesreported in the literature. The estimated RID was below 10% in >95%of infants. The model predicted median infant-mother Css ratio was0.096 (range 0.035 - 0.25); literature reported mean was 0.07 (range0-0.59). Moreover, the predicted incidence of infant-mother Css ratioof >0.2 was less than 1%.CONCLUSION: Our in silico model prediction is consistent withclinical observations, suggesting that substantial systemic fluoxetineexposure in infants through human milk is rare, but further analysisshould include active metabolites. Our approach may be valid forother drugs. [supported by CIHR and Swiss National Science Foundation(SNSF)]
Resumo:
Approximately 3% of the world population is chronically infected with the hepatitis C virus (HCV), with potential development of cirrhosis and hepatocellular carcinoma. Despite the availability of new antiviral agents, treatment remains suboptimal. Genome-wide association studies (GWAS) identified rs12979860, a polymorphism nearby IL28B, as an important predictor of HCV clearance. We report the identification of a novel TT/-G polymorphism in the CpG region upstream of IL28B, which is a better predictor of HCV clearance than rs12979860. By using peripheral blood mononuclear cells (PBMCs) from individuals carrying different allelic combinations of the TT/-G and rs12979860 polymorphisms, we show that induction of IL28B and IFN-γ-inducible protein 10 (IP-10) mRNA relies on TT/-G, but not rs12979860, making TT/-G the only functional variant identified so far. This novel step in understanding the genetic regulation of IL28B may have important implications for clinical practice, as the use of TT/G genotyping instead of rs12979860 would improve patient management.
Resumo:
OBJECTIVE: The goal of our study was to compare Doppler sonography and renal scintigraphy as tools for predicting the therapeutic response in patients after undergoing renal angioplasty. SUBJECTS AND METHODS. Seventy-four hypertensive patients underwent clinical examination, Doppler sonography, and renal scintigraphy before and after receiving captopril in preparation for renal revascularization. The patients were evaluated for the status of hypertension 3 months after the procedure. The predictive values of the findings of clinical examination, Doppler sonography, renal scintigraphy, and angiography were assessed. RESULTS: For prediction of a favorable therapeutic outcome, abnormal results from renal scintigraphy before and after captopril administration had a sensitivity of 58% and specificity of 57%. Findings of Doppler sonography had a sensitivity of 68% and specificity of 50% before captopril administration and a sensitivity of 81% and specificity of 32% after captopril administration. Significant predictors of a cure or reduction of hypertension after revascularization were low unilateral (p = 0.014) and bilateral resistive (p = 0.016) indexes on Doppler sonography before (p = 0.009) and after (p = 0.028) captopril administration. On multivariate analysis, the best predictors were a unilateral resistive index of less than 0.65 (odds ratio [OR] = 3.7) after captopril administration and a kidney longer than 93 mm (OR = 7.8). The two best combined criteria to predict the favorable therapeutic outcome were a bilateral resistive index of less than 0.75 before captopril administration combined with a unilateral resistive index of less than 0.70 after captopril administration (sensitivity, 76%; specificity, 58%) or a bilateral resistive index of less than 0.75 before captopril administration and a kidney measuring longer than 90 mm (sensitivity, 81%; specificity, 50%). CONCLUSION: Measurements of kidney length and unilateral and bilateral resistive indexes before and after captopril administration were useful in predicting the outcome after renal angioplasty. Renal scintigraphy had no significant predictive value.
Resumo:
Proteomics has come a long way from the initial qualitative analysis of proteins present in a given sample at a given time ("cataloguing") to large-scale characterization of proteomes, their interactions and dynamic behavior. Originally enabled by breakthroughs in protein separation and visualization (by two-dimensional gels) and protein identification (by mass spectrometry), the discipline now encompasses a large body of protein and peptide separation, labeling, detection and sequencing tools supported by computational data processing. The decisive mass spectrometric developments and most recent instrumentation news are briefly mentioned accompanied by a short review of gel and chromatographic techniques for protein/peptide separation, depletion and enrichment. Special emphasis is placed on quantification techniques: gel-based, and label-free techniques are briefly discussed whereas stable-isotope coding and internal peptide standards are extensively reviewed. Another special chapter is dedicated to software and computing tools for proteomic data processing and validation. A short assessment of the status quo and recommendations for future developments round up this journey through quantitative proteomics.
Resumo:
BACKGROUND: High baseline levels of IP-10 predict a slower first phase decline in HCV RNA and a poor outcome following interferon/ribavirin therapy in patients with chronic hepatitis C. Several recent studies report that single nucleotide polymorphisms (SNPs) adjacent to IL28B predict spontaneous resolution of HCV infection and outcome of treatment among HCV genotype 1 infected patients. METHODS AND FINDINGS: In the present study, we correlated the occurrence of variants at three such SNPs (rs12979860, rs12980275, and rs8099917) with pretreatment plasma IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO) involving 253 Caucasian patients. The favorable SNP variants (CC, AA, and TT, respectively) were associated with lower baseline IP-10 (P = 0.02, P = 0.01, P = 0.04) and were less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P = 0.01). Patients carrying favorable SNP genotypes had higher baseline viral load than those carrying unfavorable variants (P = 0.0013, P = 0.029, P = 0.0004 respectively). Among HCV genotype 1 infected carriers of the favorable C, A, or T alleles, IP-10 below 150 pg/mL significantly predicted a more pronounced reduction of HCV RNA from day 0 to 4 (first phase decline), which translated into increased rates of RVR (62%, 53%, and 39%) and SVR (85%, 76%, and 75% respectively) among homozygous carriers with baseline IP-10 below 150 pg/mL. In multivariate analyses of genotype 1-infected patients, baseline IP-10 and C genotype at rs12979860 independently predicted the first phase viral decline and RVR, which in turn independently predicted SVR. CONCLUSIONS: Concomitant assessment of pretreatment IP-10 and IL28B-related SNPs augments the prediction of the first phase decline in HCV RNA, RVR, and final therapeutic outcome.
Resumo:
Objectives The relevance of the SYNTAX score for the particular case of patients with acute ST- segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI) has previously only been studied in the setting of post hoc analysis of large prospective randomized clinical trials. A "real-life" population approach has never been explored before. The aim of this study was to evaluate the impact of the SYNTAX score for the prediction of the myocardial infarction size, estimated by the creatin-kinase (CK) peak value, using the SYNTAX score in patients treated with primary coronary intervention for acute ST-segment elevation myocardial infarction. Methods The primary endpoint of the study was myocardial infarction size as measured by the CK peak value. The SYNTAX score was calculated retrospectively in 253 consecutive patients with acute ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI) in a large tertiary referral center in Switzerland, between January 2009 and June 2010. Linear regression analysis was performed to compare myocardial infarction size with the SYNTAX score. This same endpoint was then stratified according to SYNTAX score tertiles: low <22 (n=178), intermediate [22-32] (n=60), and high >=33 (n=15). Results There were no significant differences in terms of clinical characteristics between the three groups. When stratified according to the SYNTAX score tertiles, average CK peak values of 1985 (low<22), 3336 (intermediate [22-32]) and 3684 (high>=33) were obtained with a p-value <0.0001. Bartlett's test for equal variances between the three groups was 9.999 (p-value <0.0067). A moderate Pearson product-moment correlation coefficient (r=0.4074) with a high statistical significance level (p-value <0.0001) was found. The coefficient of determination (R^2=0.1660) showed that approximately 17% of the variation of CK peak value (myocardial infarction size) could be explained by the SYNTAX score, i.e. by the coronary disease complexity. Conclusion In an all-comers population, the SYNTAX score is an additional tool in predicting myocardial infarction size in patients treated with primary percutaneous coronary intervention (PPCI). The stratification of patients in different risk groups according to SYNTAX enables to identify a high-risk population that may warrant particular patient care.