48 resultados para Compound Growth Rate


Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. The relationships between female body mass (WWal)i, tter size (m), juvenile growth rate (G) and mass at weaning (W20) were examined by monitoring natural litters in 29 greater white-toothed shrews, Crocidura russula (Hermann 1780). The trade-offs between m and G or W20 were further investigated by manipulating litter sizes: each of seven females reared four litters of 2, 4, 6 and 8 offspring. 2. Offspring mass at weaning (W20) exhibited a large variance, most of which could be attributed (ANCOVA on manipulated litters) to two effects: a litter-size effect, and a female individual effect, referred to as 'female quality'. 3. Litter size explained 68% of the variance in W20 among manipulated litters (linear regression). The limited milk supply was probably responsible for this effect, because litter size depressed growth rate during the first half of the lactation period (G1), but not during the weaning stage (G2). 4. Among non-manipulated litters, litter size correlated positively with maternal body mass (Wa), so that large females tended to produce small juveniles. This correlation between m and Wa is seen as the result of a body-mass dependence in the cost of raising a litter of a given size, during either pregnancy or lactation. 5. Differences in 'female quality' explained 16% of the variance in W20 among manipulated litters. This factor did not affect GI and may thus relate to differences among offspring of different females in their rates of processing milk and/or external food during late lactation. 6. 'Female quality' was independent of both body mass and litter size: larger females did not produce larger offspring when controlled for litter size, while higher-quality females did not produce larger litters. 7. Our results support the hypothesis that most variance in adult and juvenile body masses is non-genetic, and stems from the trade-off between litter size and offspring size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxygen isotope measurements using SIMS and laser-fluorination methods confirm the presence of concentric and sector zoning in low-temperature (200 degrees C to < 400 degrees C) hydrothermal quartz from Alpine veins. While concentric zoning is most readily explained by changes in the chemical composition of the fluid or temperature of crystallization, the reasons for sector zoning are more difficult to explain. Relative enrichment in (18)O for crystallographically different sectors of quartz corresponds to m > r > z. Sector zoning is, however, largely limited to the exterior zones of crystals and/or to crystals with large Al (> 1000 ppm) and trace element contents, probably formed at temperatures < 250 degrees C. Differences in delta(18)O between the prismatic (m) relative to the rhombohedral (r and z) growth sectors of up to 2 parts per thousand can be explained by a combination of a face-related crystallographic and/or a growth rate control. In contrast, isotopic sector zoning of up to about 1.5 parts per thousand amongst the different rhombohedral faces increases in parallel with the trace element content and is likely to represent disequilibrium growth. This is indicated by non-systematic, up to 2 parts per thousand, differences within single growth zones and the irregular, larger or smaller, delta(18)O values (of several permil) of the exterior compared to the inner zones of the same crystals. Disequilibrium growth may be related to the large trace element content incorporated into the growing quartz at lower temperatures (< 250 degrees C) and/or be related to fluid-vapour separation, allowing crystal growth from both a vapour as well as a liquid phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé -Caractéristiques architecturales des génomes bactériens et leurs applications Les bactéries possèdent généralement un seul chromosome circulaire. A chaque génération, ce chromosome est répliqué bidirectionnellement, par deux complexes enzymatiques de réplication se déplaçant en sens opposé depuis l'origine de réplication jusqu'au terminus, situé à l'opposé. Ce mode de réplication régit l'architecture du chromosome -l'orientation des gènes par rapport à la réplication, notamment - et est en grande partie à l'origine des pressions qui provoquent la variation de la composition en nucléotides du génome, hors des contraintes liées à la structure et à la fonction des protéines codées sur le chromosome. Le but de cette thèse est de contribuer à quantifier les effets de la réplication sur l'architecture chromosomique, en s'intéressant notamment aux gènes des ARN ribosomiques, cruciaux pour la bactérie. D'un autre côté, cette architecture est spécifique à l'espèce et donne ainsi une «identité génomique » aux gènes. Il est démontré ici qu'il est possible d'utiliser des marqueurs «naïfs » de cette identité pour détecter, notamment dans le génome du staphylocoque doré, des îlots de pathogénicité, qui concentrent un grand nombre de facteurs de virulence de la bactérie. Ces îlots de pathogénicité sont mobiles, et peuvent passer d'une bactérie à une autre, mais conservent durant un certain temps l'identité génomique de leur hôte précédent, ce qui permet de les reconnaître dans leur nouvel hôte. Ces méthodes simples, rapides et fiables seront de la plus haute importance lorsque le séquençage des génomes entiers sera rapide et disponible à très faible coût. Il sera alors possible d'analyser instantanément les déterminants pathogéniques et de résistance aux antibiotiques des agents pathogènes. Summary The bacterial genome is a highly organized structure, which may be referred to as the genome architecture, and is mainly directed by DNA replication. This thesis provides significant insights in the comprehension of the forces that shape bacterial chromosomes, different in each genome and contributing to confer them an identity. First, it shows the importance of the replication in directing the orientation of prokaryotic ribosomal RNAs, and how it shapes their nucleotide composition in a tax on-specific manner. Second, it highlights the pressure acting on the orientation of the genes in general, a majority of which are transcribed in the same direction as replication. Consequently, apparent infra-arm genome rearrangements, involving an exchange of the leading/lagging strands and shown to reduce growth rate, are very likely artifacts due to an incorrect contig assembly. Third, it shows that this genomic identity can be used to detect foreign parts in genomes, by establishing this identity for a given host and identifying the regions that deviate from it. This property is notably illustrated with Staphylococcus aureus: known pathogenicity islands and phages, and putative ancient pathogenicity islands concentrating many known pathogenicity-related genes are highlighted; the analysis also detects, incidentally, proteins responsible for the adhesion of S. aureus to the hosts' cells. In conclusion, the study of nucleotide composition of bacterial genomes provides the opportunity to better understand the genome-level pressures that shape DNA sequences, and to identify genes and regions potentially related to pathogenicity with fast, simple and reliable methods. This will be of crucial importance when whole-genome sequencing will be a rapid, inexpensive and routine tool.