58 resultados para Competency-Based Approach
Resumo:
Introduction. Development of the fetal brain surfacewith concomitant gyrification is one of the majormaturational processes of the human brain. Firstdelineated by postmortem studies or by ultrasound, MRIhas recently become a powerful tool for studying in vivothe structural correlates of brain maturation. However,the quantitative measurement of fetal brain developmentis a major challenge because of the movement of the fetusinside the amniotic cavity, the poor spatial resolution,the partial volume effect and the changing appearance ofthe developing brain. Today extensive efforts are made todeal with the âeurooepost-acquisitionâeuro reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution (Rousseau, F., 2006;Jiang, S., 2007). We here propose a framework devoted tothe segmentation of the basal ganglia, the gray-whitetissue segmentation, and in turn the 3D corticalreconstruction of the fetal brain. Method. Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences in fetuses aged from 29 to 32gestational weeks (slice thickness 5.4mm, in planespatial resolution 1.09mm). For each fetus, 6 axialvolumes shifted by 1 mm were acquired (about 1 min pervolume). First, each volume is manually segmented toextract fetal brain from surrounding fetal and maternaltissues. Inhomogeneity intensity correction and linearintensity normalization are then performed. A highspatial resolution image of isotropic voxel size of 1.09mm is created for each fetus as previously published byothers (Rousseau, F., 2006). B-splines are used for thescattered data interpolation (Lee, 1997). Then, basalganglia segmentation is performed on this superreconstructed volume using active contour framework witha Level Set implementation (Bach Cuadra, M., 2010). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed (Bach Cuadra, M., 2009). Theresulting white matter image is then binarized andfurther given as an input in the Freesurfer software(http://surfer.nmr.mgh.harvard.edu/) to provide accuratethree-dimensional reconstructions of the fetal brain.Results. High-resolution images of the cerebral fetalbrain, as obtained from the low-resolution acquired MRI,are presented for 4 subjects of age ranging from 29 to 32GA. An example is depicted in Figure 1. Accuracy in theautomated basal ganglia segmentation is compared withmanual segmentation using measurement of Dice similarity(DSI), with values above 0.7 considering to be a verygood agreement. In our sample we observed DSI valuesbetween 0.785 and 0.856. We further show the results ofgray-white matter segmentation overlaid on thehigh-resolution gray-scale images. The results arevisually checked for accuracy using the same principlesas commonly accepted in adult neuroimaging. Preliminary3D cortical reconstructions of the fetal brain are shownin Figure 2. Conclusion. We hereby present a completepipeline for the automated extraction of accuratethree-dimensional cortical surface of the fetal brain.These results are preliminary but promising, with theultimate goal to provide âeurooemovieâeuro of the normal gyraldevelopment. In turn, a precise knowledge of the normalfetal brain development will allow the quantification ofsubtle and early but clinically relevant deviations.Moreover, a precise understanding of the gyraldevelopment process may help to build hypotheses tounderstand the pathogenesis of several neurodevelopmentalconditions in which gyrification have been shown to bealtered (e.g. schizophrenia, autismâeuro¦). References.Rousseau, F. (2006), 'Registration-Based Approach forReconstruction of High-Resolution In Utero Fetal MR Brainimages', IEEE Transactions on Medical Imaging, vol. 13,no. 9, pp. 1072-1081. Jiang, S. (2007), 'MRI of MovingSubjects Using Multislice Snapshot Images With VolumeReconstruction (SVR): Application to Fetal, Neonatal, andAdult Brain Studies', IEEE Transactions on MedicalImaging, vol. 26, no. 7, pp. 967-980. Lee, S. (1997),'Scattered data interpolation with multilevel B-splines',IEEE Transactions on Visualization and Computer Graphics,vol. 3, no. 3, pp. 228-244. Bach Cuadra, M. (2010),'Central and Cortical Gray Mater Segmentation of MagneticResonance Images of the Fetal Brain', ISMRM Conference.Bach Cuadra, M. (2009), 'Brain tissue segmentation offetal MR images', MICCAI.
Resumo:
PURPOSE: To select and propose a set of knowledge, attitudes, and skills essential for the care of adolescents; to encourage the development of adolescent health multidisciplinary networks; and to set up training programs in as many European countries as possible. METHODS: The curriculum was developed by 16 physicians from 11 European countries with various professional specializations. In line with modern guidelines in medical education, it is a modular, flexible instrument which covers the main teaching areas in the field, such as basic skills (i.e. setting, rights and confidentiality, gender and cultural issues) as well as specific themes (i.e. sexual and reproductive health, eating disorders, chronic conditions). It consists of 17 thematic modules, each containing detailed objectives, learning approaches, examples, and evaluation methods. RESULT: Two international one-week summer schools were used to assess the feasibility and appropriateness of the curriculum. The overall evaluation was good, with most of the items surpassing three on a four-point Likert scale. However, it pointed to several aspects (process and content) which will need to be refined in the future, such as an increase in interactive sessions (role playing), and a better mix of clinical and public health issues.
Resumo:
We here summarize five articles bringing new advances in our knowledge on neuropathic pain and put them into perspective with our current understanding. The first uses a mechanism-based approach with a capsaicin test to stratify patients suffering from painful diabetic neuropathy before starting a topical clonidine treatment. The second reviews disinhibition as a critical mechanism and a promising target for chronic pain. The third evokes neuroglial interactions and its implication regarding the interplay between injuries in childhood and hypersensitivity in adulthood. The last articles remind us that interventional therapies, not always very invasive, have a future potential in the therapy of frequent conditions such as head pain disorders.
Resumo:
Due to actual demographic evolution, emergency departments have to face a dramatic increase in admissions of elderly people. The peculiar medical and socio-demographic characteristics of these old patients emphasize the need of specific decision processes and resources allocation. An individual-based approach, related to significant ethical values, should allow better diagnostic and therapeutic attitudes. Such a way to admit, evaluate and treat older patients implies an active collaboration with patients and their relatives, but also with all medical interveners, including in particular primary care physicians.
Resumo:
The Swiss postgraduate training program in general internal medicine is now designed as a competency-based curriculum. In other words, by the end of their training, the residents should demonstrate a set of predefined competences. Many of those competences have to be learnt in outpatient settings. Thus, the primary care physicians have more than ever an important role to play in educating tomorrows doctors. A competency-based model of training requires a regular assessment of the residents. The mini-CEX (mini-Clinical Evaluation eXercise) is the assessment tool proposed by the Swiss institute for postgraduate and continuing education. The mini-CEX is based on the direct observation of the trainees performing a specific task, as well as on the ensuing feedback. This article aims at introducing our colleagues in charge of residents to the mini-CEX, which is a useful tool promoting the culture of feedback in medical education.
Resumo:
BACKGROUND: The annotation of protein post-translational modifications (PTMs) is an important task of UniProtKB curators and, with continuing improvements in experimental methodology, an ever greater number of articles are being published on this topic. To help curators cope with this growing body of information we have developed a system which extracts information from the scientific literature for the most frequently annotated PTMs in UniProtKB. RESULTS: The procedure uses a pattern-matching and rule-based approach to extract sentences with information on the type and site of modification. A ranked list of protein candidates for the modification is also provided. For PTM extraction, precision varies from 57% to 94%, and recall from 75% to 95%, according to the type of modification. The procedure was used to track new publications on PTMs and to recover potential supporting evidence for phosphorylation sites annotated based on the results of large scale proteomics experiments. CONCLUSIONS: The information retrieval and extraction method we have developed in this study forms the basis of a simple tool for the manual curation of protein post-translational modifications in UniProtKB/Swiss-Prot. Our work demonstrates that even simple text-mining tools can be effectively adapted for database curation tasks, providing that a thorough understanding of the working process and requirements are first obtained. This system can be accessed at http://eagl.unige.ch/PTM/.
Resumo:
Subplate neurons are among the earliest born cells of the neocortex and play a fundamental role in cortical development, in particular in the formation of thalamocortical connections. Subplate abnormalities have been described in several neuropathological disorders including schizophrenia, autism and periventricular eukomalacia (Eastwood and Harrison, Schizophr Res, 79, 2005; McQuillen and Ferriero, Brain Pathol, 15, 2005). We have identified and confirmed a range of specific markers for murine subplate using a microarray based approach and found that different subplate subpopulations are characterized by distinct expression patterns of these genes (Hoerder-Suabedissen et al., Cereb Cortex, 19, 2009). In this current study, we are making use of these markers to investigate neuropathological changes of the subplate after cerebral hypoxia-ischemia (HI) in the neonatal rat. First, we characterized the expression of a number of murine subplate markers in the postnatal rat using immunohistochemistry and in situ hybridization. While several genes (Nurr1, Cplx3, Ctgf and Tmem163) presented very similar expression patterns as in the mouse, others (Ddc, MoxD1 and TRH) were completely absent in the rat cortex. This finding suggests important differences in the subplate populations of these two rodent species. In a neonatal rat model of HI, selective vulnerability of subplate has been suggested using BrdU birthdating methods (McQuillen et al., J Neurosci, 15, 2003). We hypothesized that certain subplate subpopulations could be more susceptible than others and analyzed the above subplate markers in a similar yet slightly milder HI model. Two-day old male rat pups underwent permanent occlusion of the right common carotid artery followed by a period of hypoxia (6% O2, 1.5h or 2h) and were analyzed six days later. Preliminary counts on three subplate subpopulations (Nurr1+, Cplx3+ and Ctgf+ cells, respectively) showed similar reductions in cell numbers for all three groups. In addition, we found that the majority of cases which show changes in the subplate also exhibit lesions in the deep cortical layers VI (identified by FoxP2 expression) and sometimes even layer V (revealed by Er81 immunoreactivity), which questions the selective susceptibility of subplate over other cortical layers under the conditions we used in our model. Supported by MRC, FMO holds a Berrow Scholarship, Lincoln College, Oxford.
Resumo:
Anticoagulants are a mainstay of cardiovascular therapy, and parenteral anticoagulants have widespread use in cardiology, especially in acute situations. Parenteral anticoagulants include unfractionated heparin, low-molecular-weight heparins, the synthetic pentasaccharides fondaparinux, idraparinux and idrabiotaparinux, and parenteral direct thrombin inhibitors. The several shortcomings of unfractionated heparin and of low-molecular-weight heparins have prompted the development of the other newer agents. Here we review the mechanisms of action, pharmacological properties and side effects of parenteral anticoagulants used in the management of coronary heart disease treated with or without percutaneous coronary interventions, cardioversion for atrial fibrillation, and prosthetic heart valves and valve repair. Using an evidence-based approach, we describe the results of completed clinical trials, highlight ongoing research with currently available agents, and recommend therapeutic options for specific heart diseases.
Resumo:
The global structural connectivity of the brain, the human connectome, is now accessible at millimeter scale with the use of MRI. In this paper, we describe an approach to map the connectome by constructing normalized whole-brain structural connection matrices derived from diffusion MRI tractography at 5 different scales. Using a template-based approach to match cortical landmarks of different subjects, we propose a robust method that allows (a) the selection of identical cortical regions of interest of desired size and location in different subjects with identification of the associated fiber tracts (b) straightforward construction and interpretation of anatomically organized whole-brain connection matrices and (c) statistical inter-subject comparison of brain connectivity at various scales. The fully automated post-processing steps necessary to build such matrices are detailed in this paper. Extensive validation tests are performed to assess the reproducibility of the method in a group of 5 healthy subjects and its reliability is as well considerably discussed in a group of 20 healthy subjects.
Resumo:
Résumé: Le développement rapide de nouvelles technologies comme l'imagerie médicale a permis l'expansion des études sur les fonctions cérébrales. Le rôle principal des études fonctionnelles cérébrales est de comparer l'activation neuronale entre différents individus. Dans ce contexte, la variabilité anatomique de la taille et de la forme du cerveau pose un problème majeur. Les méthodes actuelles permettent les comparaisons interindividuelles par la normalisation des cerveaux en utilisant un cerveau standard. Les cerveaux standards les plus utilisés actuellement sont le cerveau de Talairach et le cerveau de l'Institut Neurologique de Montréal (MNI) (SPM99). Les méthodes de recalage qui utilisent le cerveau de Talairach, ou celui de MNI, ne sont pas suffisamment précises pour superposer les parties plus variables d'un cortex cérébral (p.ex., le néocortex ou la zone perisylvienne), ainsi que les régions qui ont une asymétrie très importante entre les deux hémisphères. Le but de ce projet est d'évaluer une nouvelle technique de traitement d'images basée sur le recalage non-rigide et utilisant les repères anatomiques. Tout d'abord, nous devons identifier et extraire les structures anatomiques (les repères anatomiques) dans le cerveau à déformer et celui de référence. La correspondance entre ces deux jeux de repères nous permet de déterminer en 3D la déformation appropriée. Pour les repères anatomiques, nous utilisons six points de contrôle qui sont situés : un sur le gyrus de Heschl, un sur la zone motrice de la main et le dernier sur la fissure sylvienne, bilatéralement. Evaluation de notre programme de recalage est accomplie sur les images d'IRM et d'IRMf de neuf sujets parmi dix-huit qui ont participés dans une étude précédente de Maeder et al. Le résultat sur les images anatomiques, IRM, montre le déplacement des repères anatomiques du cerveau à déformer à la position des repères anatomiques de cerveau de référence. La distance du cerveau à déformer par rapport au cerveau de référence diminue après le recalage. Le recalage des images fonctionnelles, IRMf, ne montre pas de variation significative. Le petit nombre de repères, six points de contrôle, n'est pas suffisant pour produire les modifications des cartes statistiques. Cette thèse ouvre la voie à une nouvelle technique de recalage du cortex cérébral dont la direction principale est le recalage de plusieurs points représentant un sillon cérébral. Abstract : The fast development of new technologies such as digital medical imaging brought to the expansion of brain functional studies. One of the methodolgical key issue in brain functional studies is to compare neuronal activation between individuals. In this context, the great variability of brain size and shape is a major problem. Current methods allow inter-individual comparisions by means of normalisation of subjects' brains in relation to a standard brain. A largerly used standard brains are the proportional grid of Talairach and Tournoux and the Montreal Neurological Insititute standard brain (SPM99). However, there is a lack of more precise methods for the superposition of more variable portions of the cerebral cortex (e.g, neocrotex and perisyvlian zone) and in brain regions highly asymmetric between the two cerebral hemipsheres (e.g. planum termporale). The aim of this thesis is to evaluate a new image processing technique based on non-linear model-based registration. Contrary to the intensity-based, model-based registration uses spatial and not intensitiy information to fit one image to another. We extract identifiable anatomical features (point landmarks) in both deforming and target images and by their correspondence we determine the appropriate deformation in 3D. As landmarks, we use six control points that are situated: one on the Heschl'y Gyrus, one on the motor hand area, and one on the sylvian fissure, bilaterally. The evaluation of this model-based approach is performed on MRI and fMRI images of nine of eighteen subjects participating in the Maeder et al. study. Results on anatomical, i.e. MRI, images, show the mouvement of the deforming brain control points to the location of the reference brain control points. The distance of the deforming brain to the reference brain is smallest after the registration compared to the distance before the registration. Registration of functional images, i.e fMRI, doesn't show a significant variation. The small number of registration landmarks, i.e. six, is obvious not sufficient to produce significant modification on the fMRI statistical maps. This thesis opens the way to a new computation technique for cortex registration in which the main directions will be improvement of the registation algorithm, using not only one point as landmark, but many points, representing one particular sulcus.
Resumo:
NlmCategory="UNASSIGNED">This Perspective discusses the pertinence of variable dosing regimens with anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) with regard to real-life requirements. After the initial pivotal trials of anti-VEGF therapy, the variable dosing regimens pro re nata (PRN), Treat-and-Extend, and Observe-and-Plan, a recently introduced regimen, aimed to optimize the anti-VEGF treatment strategy for nAMD. The PRN regimen showed good visual results but requires monthly monitoring visits and can therefore be difficult to implement. Moreover, application of the PRN regimen revealed inferior results in real-life circumstances due to problems with resource allocation. The Treat-and-Extend regimen uses an interval based approach and has become widely accepted for its ease of preplanning and the reduced number of office visits required. The parallel development of the Observe-and-Plan regimen demonstrated that the future need for retreatment (interval) could be reliably predicted. Studies investigating the observe-and-plan regimen also showed that this could be used in individualized fixed treatment plans, allowing for dramatically reduced clinical burden and good outcomes, thus meeting the real life requirements. This progressive development of variable dosing regimens is a response to the real-life circumstances of limited human, technical, and financial resources. This includes an individualized treatment approach, optimization of the number of retreatments, a minimal number of monitoring visits, and ease of planning ahead. The Observe-and-Plan regimen achieves this goal with good functional results. Translational Relevance: This perspective reviews the process from the pivotal clinical trials to the development of treatment regimens which are adjusted to real life requirements. The article discusses this translational process which- although not the classical interpretation of translation from fundamental to clinical research, but a subsequent process after the pivotal clinical trials - represents an important translational step from the clinical proof of efficacy to optimization in terms of patients' and clinics' needs. The related scientific procedure includes the exploration of the concept, evaluation of security, and finally proof of efficacy.
Resumo:
This review presents the evolution of steroid analytical techniques, including gas chromatography coupled to mass spectrometry (GC-MS), immunoassay (IA) and targeted liquid chromatography coupled to mass spectrometry (LC-MS), and it evaluates the potential of extended steroid profiles by a metabolomics-based approach, namely steroidomics. Steroids regulate essential biological functions including growth and reproduction, and perturbations of the steroid homeostasis can generate serious physiological issues; therefore, specific and sensitive methods have been developed to measure steroid concentrations. GC-MS measuring several steroids simultaneously was considered the first historical standard method for analysis. Steroids were then quantified by immunoassay, allowing a higher throughput; however, major drawbacks included the measurement of a single compound instead of a panel and cross-reactivity reactions. Targeted LC-MS methods with selected reaction monitoring (SRM) were then introduced for quantifying a small steroid subset without the problems of cross-reactivity. The next step was the integration of metabolomic approaches in the context of steroid analyses. As metabolomics tends to identify and quantify all the metabolites (i.e., the metabolome) in a specific system, appropriate strategies were proposed for discovering new biomarkers. Steroidomics, defined as the untargeted analysis of the steroid content in a sample, was implemented in several fields, including doping analysis, clinical studies, in vivo or in vitro toxicology assays, and more. This review discusses the current analytical methods for assessing steroid changes and compares them to steroidomics. Steroids, their pathways, their implications in diseases and the biological matrices in which they are analysed will first be described. Then, the different analytical strategies will be presented with a focus on their ability to obtain relevant information on the steroid pattern. The future technical requirements for improving steroid analysis will also be presented.
Resumo:
La tomodensitométrie (TDM) est une technique d'imagerie pour laquelle l'intérêt n'a cessé de croitre depuis son apparition au début des années 70. De nos jours, l'utilisation de cette technique est devenue incontournable, grâce entre autres à sa capacité à produire des images diagnostiques de haute qualité. Toutefois, et en dépit d'un bénéfice indiscutable sur la prise en charge des patients, l'augmentation importante du nombre d'examens TDM pratiqués soulève des questions sur l'effet potentiellement dangereux des rayonnements ionisants sur la population. Parmi ces effets néfastes, l'induction de cancers liés à l'exposition aux rayonnements ionisants reste l'un des risques majeurs. Afin que le rapport bénéfice-risques reste favorable au patient il est donc nécessaire de s'assurer que la dose délivrée permette de formuler le bon diagnostic tout en évitant d'avoir recours à des images dont la qualité est inutilement élevée. Ce processus d'optimisation, qui est une préoccupation importante pour les patients adultes, doit même devenir une priorité lorsque l'on examine des enfants ou des adolescents, en particulier lors d'études de suivi requérant plusieurs examens tout au long de leur vie. Enfants et jeunes adultes sont en effet beaucoup plus sensibles aux radiations du fait de leur métabolisme plus rapide que celui des adultes. De plus, les probabilités des évènements auxquels ils s'exposent sont également plus grandes du fait de leur plus longue espérance de vie. L'introduction des algorithmes de reconstruction itératifs, conçus pour réduire l'exposition des patients, est certainement l'une des plus grandes avancées en TDM, mais elle s'accompagne de certaines difficultés en ce qui concerne l'évaluation de la qualité des images produites. Le but de ce travail est de mettre en place une stratégie pour investiguer le potentiel des algorithmes itératifs vis-à-vis de la réduction de dose sans pour autant compromettre la qualité du diagnostic. La difficulté de cette tâche réside principalement dans le fait de disposer d'une méthode visant à évaluer la qualité d'image de façon pertinente d'un point de vue clinique. La première étape a consisté à caractériser la qualité d'image lors d'examen musculo-squelettique. Ce travail a été réalisé en étroite collaboration avec des radiologues pour s'assurer un choix pertinent de critères de qualité d'image. Une attention particulière a été portée au bruit et à la résolution des images reconstruites à l'aide d'algorithmes itératifs. L'analyse de ces paramètres a permis aux radiologues d'adapter leurs protocoles grâce à une possible estimation de la perte de qualité d'image liée à la réduction de dose. Notre travail nous a également permis d'investiguer la diminution de la détectabilité à bas contraste associée à une diminution de la dose ; difficulté majeure lorsque l'on pratique un examen dans la région abdominale. Sachant que des alternatives à la façon standard de caractériser la qualité d'image (métriques de l'espace Fourier) devaient être utilisées, nous nous sommes appuyés sur l'utilisation de modèles d'observateurs mathématiques. Nos paramètres expérimentaux ont ensuite permis de déterminer le type de modèle à utiliser. Les modèles idéaux ont été utilisés pour caractériser la qualité d'image lorsque des paramètres purement physiques concernant la détectabilité du signal devaient être estimés alors que les modèles anthropomorphes ont été utilisés dans des contextes cliniques où les résultats devaient être comparés à ceux d'observateurs humain, tirant profit des propriétés de ce type de modèles. Cette étude a confirmé que l'utilisation de modèles d'observateurs permettait d'évaluer la qualité d'image en utilisant une approche basée sur la tâche à effectuer, permettant ainsi d'établir un lien entre les physiciens médicaux et les radiologues. Nous avons également montré que les reconstructions itératives ont le potentiel de réduire la dose sans altérer la qualité du diagnostic. Parmi les différentes reconstructions itératives, celles de type « model-based » sont celles qui offrent le plus grand potentiel d'optimisation, puisque les images produites grâce à cette modalité conduisent à un diagnostic exact même lors d'acquisitions à très basse dose. Ce travail a également permis de clarifier le rôle du physicien médical en TDM: Les métriques standards restent utiles pour évaluer la conformité d'un appareil aux requis légaux, mais l'utilisation de modèles d'observateurs est inévitable pour optimiser les protocoles d'imagerie. -- Computed tomography (CT) is an imaging technique in which interest has been quickly growing since it began to be used in the 1970s. Today, it has become an extensively used modality because of its ability to produce accurate diagnostic images. However, even if a direct benefit to patient healthcare is attributed to CT, the dramatic increase in the number of CT examinations performed has raised concerns about the potential negative effects of ionising radiation on the population. Among those negative effects, one of the major risks remaining is the development of cancers associated with exposure to diagnostic X-ray procedures. In order to ensure that the benefits-risk ratio still remains in favour of the patient, it is necessary to make sure that the delivered dose leads to the proper diagnosis without producing unnecessarily high-quality images. This optimisation scheme is already an important concern for adult patients, but it must become an even greater priority when examinations are performed on children or young adults, in particular with follow-up studies which require several CT procedures over the patient's life. Indeed, children and young adults are more sensitive to radiation due to their faster metabolism. In addition, harmful consequences have a higher probability to occur because of a younger patient's longer life expectancy. The recent introduction of iterative reconstruction algorithms, which were designed to substantially reduce dose, is certainly a major achievement in CT evolution, but it has also created difficulties in the quality assessment of the images produced using those algorithms. The goal of the present work was to propose a strategy to investigate the potential of iterative reconstructions to reduce dose without compromising the ability to answer the diagnostic questions. The major difficulty entails disposing a clinically relevant way to estimate image quality. To ensure the choice of pertinent image quality criteria this work was continuously performed in close collaboration with radiologists. The work began by tackling the way to characterise image quality when dealing with musculo-skeletal examinations. We focused, in particular, on image noise and spatial resolution behaviours when iterative image reconstruction was used. The analyses of the physical parameters allowed radiologists to adapt their image acquisition and reconstruction protocols while knowing what loss of image quality to expect. This work also dealt with the loss of low-contrast detectability associated with dose reduction, something which is a major concern when dealing with patient dose reduction in abdominal investigations. Knowing that alternative ways had to be used to assess image quality rather than classical Fourier-space metrics, we focused on the use of mathematical model observers. Our experimental parameters determined the type of model to use. Ideal model observers were applied to characterise image quality when purely objective results about the signal detectability were researched, whereas anthropomorphic model observers were used in a more clinical context, when the results had to be compared with the eye of a radiologist thus taking advantage of their incorporation of human visual system elements. This work confirmed that the use of model observers makes it possible to assess image quality using a task-based approach, which, in turn, establishes a bridge between medical physicists and radiologists. It also demonstrated that statistical iterative reconstructions have the potential to reduce the delivered dose without impairing the quality of the diagnosis. Among the different types of iterative reconstructions, model-based ones offer the greatest potential, since images produced using this modality can still lead to an accurate diagnosis even when acquired at very low dose. This work has clarified the role of medical physicists when dealing with CT imaging. The use of the standard metrics used in the field of CT imaging remains quite important when dealing with the assessment of unit compliance to legal requirements, but the use of a model observer is the way to go when dealing with the optimisation of the imaging protocols.