88 resultados para Colonia Varese riqualificazione architettonica Milano Marittima
Resumo:
In vivo exposure to chronic hypoxia is considered to be a cause of myocardial dysfunction, thereby representing a deleterious condition, but repeated aeration episodes may exert some cardioprotection. We investigated the possible role of ATP-sensitive potassium channels in these mechanisms. First, rats (n = 8/group) were exposed for 14 days to either chronic hypoxia (CH; 10% O(2)) or chronic hypoxia with one episode/day of 1-hr normoxic aeration (CH+A), with normoxia (N) as the control. Second, isolated hearts were Langendorff perfused under hypoxia (10% O(2), 30 min) and reoxygenated (94% O(2), 30 min) with or without 3 microM glibenclamide (nonselective K(+)(ATP) channel-blocker) or 100 microM diazoxide (selective mitochondrial K(+)(ATP) channel-opener). Blood gasses, hemoglobin concentration, and plasma malondialdehyde were similar in CH and CH+A and in both different from normoxic (P < 0.01), body weight gain and plasma nitrate/nitrite were higher in CH+A than CH (P < 0.01), whereas apoptosis (number of TUNEL-positive nuclei) was less in CH+A than CH (P < 0.05). During in vitro hypoxia, the efficiency (ratio of ATP production/pressure x rate product) was the same in all groups and diazoxide had no measurable effects on myocardial performance, whereas glibenclamide increased end-diastolic pressure more in N and CH than in CH+A hearts (P < 0.05). During reoxgenation, efficiency was markedly less in CH with respect to N and CH+A (P < 0.0001), and ratex pressure product remained lower in CH than N and CH+A hearts (P < 0.001), but glibenclamide or diazoxide abolished this difference. Glibenclamide, but not diazoxide, decreased vascular resistance in N and CH (P < 0.005 and < 0.001) without changes in CH+A. We hypothesize that cardioprotection in chronically hypoxic hearts derive from cell depolarization by sarcolemmal K(+)(ATP) blockade or from preservation of oxidative phosphorylation efficiency (ATP turnover/myocardial performance) by mitochondrial K(+)(ATP) opening. Therefore K(+)(ATP) channels are involved in the deleterious effects of chronic hypoxia and in the cardioprotection elicited when chronic hypoxia is interrupted with short normoxic aeration episodes.
Resumo:
Age related macular degeneration (AMD) is a pathological aging of the macula, brought about by the interaction of genetic and environmental factors. It induces geographic atrophy of the retina and/or choroidal neovascularization. In the latter, abnormal vessels develop from the choriocapillaris, with the involvement of VEGF (vascular endothelial growth factor). The VEGF family includes several factors, including VEGF-A, B, C, D, F and PlGF (placental growth factor). Their biological properties and their affinities to the VEGFR1, VEGFR2 and VEGFR3 receptors found on endothelial cells differ. Exudative AMD involves mainly VEGF-A and VEGF-R2. Anti-VEGF agents used in ophthalmology (ranibizumab, bevacizumab and aflibercept) are designed to primarily target this pathway. In vitro, all have sufficient affinity to their ligands. Their therapeutic efficacy must therefore be judged based on clinical criteria. In clinical practice, the minimum number of injections required for a satisfactory result appears to be comparable with all the three. The few available studies on therapeutic substitutions of anti-VEGF compounds suggest that some patients may benefit from substituting the anti-VEGF in cases of an unsatisfactory response to an initial molecule. Although local side effects, including increased risk of geographic atrophy, and systemic effects, including vascular accidents, have been suggested, these risks remain low, specially compared to the benefits of the treatment. Differences in safety between anti-VEGF are theoretically possible but unproven.
Resumo:
The combination of oxaliplatin, leucovorin and 5-fluorouracil (FOLFOX-4) is still a reference regimen in advanced colorectal cancer; however, the addition of new biologic compounds represents a significant way forward. Bortezomib is an inhibitor of proteasome, a multicatalytic enzyme complex that degrades several intracellular proteins. In this study, escalating doses of Bortezomib were administered along with the standard FOLFOX-4 doses, in order to evaluate the dose-limiting toxicity (DLT), toxicity profile and activity of the combination. Patients with advanced colorectal cancer, unpretreated for metastatic disease, were enroled in the study. Bortezomib starting dose was 1.3mg/m(2), which was to be escalated in the subsequent steps according to the toxicities observed after first cycle. Exploratory pharmacogenetics research was conducted by analysing the association between clinical outcomes and polymorphisms in candidate genes for response to each of the used drugs. Correlation between tumour marker changes and response was also investigated. One mg/m(2) (DL-1) was defined as being the maximum tolerated dose since only 1 DLT was observed in 6 patients. The main toxicities were haematologic, neuropathy, diarrhoea and fatigue. Amongst 13 evaluable patients, five had a partial response, five had a stable disease and three patients progressed. Two patients are long-term survivors after a combined chemosurgical approach. Further trials of the current combination may be justified.
Resumo:
Rat hindlimb muscles constitutively express the inducible heat shock protein 72 (Hsp70), apparently in proportion to the slow myosin content. Since it remains controversial whether chronic Hsp70 expression reflects the overimposed stress, we investigated Hsp70 cellular distribution in fast muscles of the posterior rat hindlimb after (1) mild exercise training (up to 30 m/min treadmill run for 1 h/day), which induces a remodeling in fast fiber composition, or (2) prolonged exposure to normobaric hypoxia (10%O(2)), which does not affect fiber-type composition. Both conditions increased significantly protein Hsp70 levels in the skeletal muscle. Immunohistochemistry showed the labeling for Hsp70 in subsets of both slow/type 1 and fast/type 2A myofibers of control, sedentary, and normoxic rats. Endurance training increased about threefold the percentage of Hsp70-positive myofibers (P < 0.001), and changed the distribution of Hsp70 immunoreactivity, which involved a larger subset of both type 2A and intermediate type 2A/2X myofibers (P < 0.001) and vascular smooth muscle cells. Hypoxia induced Hsp70 immunoreactivity in smooth muscle cells of veins and did not increase the percentage of Hsp70-positive myofibers; however, sustained exposure to hypoxia affected the distribution of Hsp70 immunoreactivity, which appeared detectable in a very small subset of type 2A fibers, whereas it concentrated in type 1 myofibers (P < 0.05) together with the labeling for heme-oxygenase isoform 1, a marker of oxidative stress. Therefore, the chronic induction of Hsp70 expression in rat skeletal muscles is not obligatory related to the slow fiber phenotype but reveals the occurrence of a stress response.
Resumo:
The transapical transcatheter aortic valve implantation (TA-TAVI) in degenerated aortic bioprosthesis is an emerging therapy for surgically non-amenable patients. However, the presence of different types of aortic bioprostheses (stented and stentless), available in different sizes (19-27 mm), can be at the origin of important mismatches between the malfunctioning, degenerated aortic valves and the inner stent-valves implanted through transapical accesses (23 and 26 mm Edwards Sapien transcatheter stent-valves). We report an emergency TA-TAVI treatment of a severely regurgitant degenerated 23 mm Mitroflow aortic bioprosthesis (Sorin Group, Milano, Italy) implanted seven years earlier in an 80-year-old lady, and we reviewed the current available literature about transapical 'valve-in-valve' procedures to analyze the hemodynamic results and the ideal 'prosthesis-to-prosthesis' match.